建筑工程测量-测量误差的基本知识(21页).doc
《建筑工程测量-测量误差的基本知识(21页).doc》由会员分享,可在线阅读,更多相关《建筑工程测量-测量误差的基本知识(21页).doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-建筑工程测量-测量误差的基本知识-第 95 页第五节 测量误差基础知识一、测量误差概述1测量误差产生的原因 测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。实践证明,产生测量误差的原因主要有以下三个方面。(1)人为因素。由于人为因素所造成的误差,包括观测者的技术水平和感觉器管的鉴别能力有一定的局限性,主要体现在仪器的对中、照准、读数等方面。(2)测量仪器的原因。由于测量仪器的因素所造成的误差,包括测量仪器在构造上的缺陷、仪器本身的精度、磨耗误差及使用前未经校正等因素。 (3)环境因素。外界观测条件是指野外观测过程中,外界条件的因素,如
2、天气的变化、植被的不同、地面土质松紧的差异、地形的起伏、周围建筑物的状况,以及太阳光线的强弱、照射的角度大小等。测量时受环境或场地之不同,可能造成的误差有热变形误差和随机误差为最显着。热变形误差通常发生于因室温、人体接触及加工后工件温度等情形下,因此必须在温湿度控制下,不可用手接触工件及量具、工件加工后待冷却后才测量。但为了缩短加工时在加工中需实时测量,因此必须考虑各种材料之热胀系数 作为补偿,以因应温度材料的热膨胀系数 不同所造成的误差。在实际的测量工作中,大量实践表明,当对某一未知量进行多次观测时,不论测量仪器有多精密,观测进行得多么仔细,所得的观测值之间总是不尽相同。这种差异都是由于测量
3、中存在误差的缘故。测量所获得的数值称为观测值。由于观测中误差的存在而往往导致各观测值与其真实值(简称为真值)之间存在差异,这种差异称为测量误差(或观测误差)。用L代表观测值,X代表真值,则误差=观测值L真值X,即 (5-1)这种误差通常又称之为真误差。由于任何测量工作都是由观测者使用某种仪器、工具,在一定的外界条件下进行的,所以,观测误差来源于以下三个方面:观测者的视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏。通常我们把这三个方面综合起来称为观测条件。观测条件将影响观测成果的精度:若观测条件好,则测量误差小,测量的精度就高;反之,则测量误差大,精度就低;若观测条件相同,则
4、可认为精度相同。在相同观测条件下进行的一系列观测称为等精度观测;在不同观测条件下进行的一系列观测称为不等精度观测。由于在测量的结果中含有误差是不可避免的,因此,研究误差理论的目的不是为了去消灭误差,而是要对误差的来源、性质及其产生和传播的规律进行研究,以便解决测量工作中遇到的一些实际问题。例如:在一系列的观测值中,如何确定观测量的最可靠值;如何来评定测量的精度;以及如何确定误差的限度等。所有这些问题,运用测量误差理论均可得到解决。二、测量误差的分类测量误差按其性质可分为系统误差和偶然误差两类:(一)系统误差在相同的观测条件下,对某一未知量进行一系列观测,若误差的大小和符号保持不变,或按照一定的
5、规律变化,这种误差称为系统误差。例如水准仪的视准轴与水准管轴不平行而引起的读数误差,与视线的长度成正比且符号不变;经纬仪因视准轴与横轴不垂直而引起的方向误差,随视线竖直角的大小而变化且符号不变;距离测量尺长不准产生的误差随尺段数成比例增加且符号不变。这些误差都属于系统误差。系统误差主要来源于仪器工具上的某些缺陷;来源于观测者的某些习惯的影响,例如有些人习惯地把读数估读得偏大或偏小;也有来源于外界环境的影响,如风力、温度及大气折光等的影响。系统误差的特点是具有累积性,对测量结果影响较大,因此,应尽量设法消除或减弱它对测量成果的影响。方法有两种:一是在观测方法和观测程序上采取一定的措施来消除或减弱
6、系统误差的影响。例如在水准测量中,保持前视和后视距离相等,来消除视准轴与水准管轴不平行所产生的误差;在测水平角时,采取盘左和盘右观测取其平均值,以消除视准轴与横轴不垂直所引起的误差。另一种是找出系统误差产生的原因和规律,对测量结果加以改正。例如在钢尺量距中,可对测量结果加尺长改正和温度改正,以消除钢尺长度的影响。(二)偶然误差在相同的观测条件下,对某一未知量进行一系列观测,如果观测误差的大小和符号没有明显的规律性,即从表面上看,误差的大小和符号均呈现偶然性,这种误差称为偶然误差。例如在水平角测量中照准目标时,可能稍偏左也可能稍偏右,偏差的大小也不一样;又如在水准测量或钢尺量距中估读毫米数时,可
7、能偏大也可能偏小,其大小也不一样,这些都属于偶然误差。产生偶然误差的原因很多,主要是由于仪器或人的感觉器官能力的限制,如观测者的估读误差、照准误差等,以及环境中不能控制的因素如不断变化着的温度、风力等外界环境所造成。偶然误差在测量过程中是不可避免的,从单个误差来看,其大小和符号没有一定的规律性,但对大量的偶然误差进行统计分析,就能发现在观测值内部却隐藏着一种必然的规律,这给偶然误差的处理提供了可能性。测量成果中除了系统误差和偶然误差以外,还可能出现错误(有时也称之为粗差)。错误产生的原因较多,可能由作业人员疏忽大意、失职而引起,如大数读错、读数被记录员记错、照错了目标等;也可能是仪器自身或受外
8、界干扰发生故障引起的;还有可能是容许误差取值过小造成的。错误对观测成果的影响极大,所以在测量成果中绝对不允许有错误存在。发现错误的方法是:进行必要的重复观测,通过多余观测条件,进行检核验算;严格按照国家有关部门制定的各种测量规范进行作业等。在测量的成果中,错误可以发现并剔除,系统误差能够加以改正,而偶然误差是不可避免的,它在测量成果中占主导地位,所以测量误差理论主要是处理偶然误差的影响。下面详细分析偶然误差的特性。三、偶然误差的特性偶然误差的特点具有随机性,所以它是一种随机误差。偶然误差就单个而言具有随机性,但在总体上具有一定的统计规律,是服从于正态分布的随机变量。在测量实践中,根据偶然误差的
9、分布,我们可以明显地看出它的统计规律。例如在相同的观测条件下,观测了217个三角形的全部内角。已知三角形内角之和等于180,这是三内角之和的理论值即真值X,实际观测所得的三内角之和即观测值L。由于各观测值中都含有偶然误差,因此各观测值不一定等于真值,其差即真误差。以下分两种方法来分析:(一)表格法由(5-1)式计算可得217个内角和的真误差,按其大小和一定的区间(本例为d=3),分别统计在各区间正负误差出现的个数k及其出现的频率k/n(n=217),列于表5-1中。从表5-1中可以看出,该组误差的分布表现出如下规律:小误差出现的个数比大误差多;绝对值相等的正、负误差出现的个数和频率大致相等;最
10、大误差不超过27。实践证明,对大量测量误差进行统计分析,都可以得出上述同样的规律,且观测的个数越多,这种规律就越明显。表5-1 三角形内角和真误差统计表误差区间d正 误 差负 误 差合 计个 数k频 率k/n个 数k频 率k/n个 数k频 率k/n0336699121215151818212124242727以上3021151412852100.1380.0970.0690.0650.0550.0370.0230.0090.00502920181610862000.1340.0920.0830.0730.0460.0370.0280.00900594133302216114100.2720.1
11、890.1520.1380.1010.0740.0510.0180.0050合 计1080.4981090.5022171.000(二)直方图法为了更直观地表现误差的分布,可将表5-1的数据用较直观的频率直方图来表示。以真误差的大小为横坐标,以各区间内误差出现的频率k/n与区间d的比值为纵坐标,在每一区间上根据相应的纵坐标值画出一矩形,则各矩形的面积等于误差出现在该区间内的频率k/n。如图5-1中有斜线的矩形面积,表示误差出现在+6+9之间的频率,等于0.069。显然,所有矩形面积的总和等于1。可以设想,如果在相同的条件下,所观测的三角形个数不断增加,则误差出现在各区间的(5-2)频率就趋向于
12、一个稳定值。当n时,各区间的频率也就趋向于一个完全确定的数值概率。若无限缩小误差区间,即d0,则图5-1各矩形的上部折线,就趋向于一条以纵轴为对称的光滑曲线(如图5-2所示),称为误差概率分布曲线,简称误差分布曲线,在数理统计中,它服从于正态分布,该曲线的方程式为(5-3)式中:为偶然误差;(0)为与观测条件有关的一个参数,称为误差分布的标准差,它的大小可以反映观测精度的高低。其定义为:在图5-1中各矩形的面积是频率k/n。由概率统计原理可知,频率即真误差出现在区间d上的概率P(),记为(5-4)根据上述分析,可以总结出偶然误差具有如下四个特性:(1) 有限性:在一定的观测条件下,偶然误差的绝
13、对值不会超过一定的限值;(2) 集中性:即绝对值较小的误差比绝对值较大的误差出现的概率大;(3) 对称性:绝对值相等的正误差和负误差出现的概率相同;(4) 抵偿性:当观测次数无限增多时,偶然误差的算术平均值趋近于零。即 (5-5)式中 在数理统计中,也称偶然误差的数学期望为零,用公式表示为E()=0。图5-2中的误差分布曲线,是对应着某一观测条件的,当观测条件不同时,其相应误差分布曲线的形状也将随之改变。例如图5-3中,曲线I、II为对应着两组不同观测条件得出的两组误差分布曲线,它们均属于正态分布,但从两曲线的形状中可以看出两组观测的差异。当=0时,。、是这两误差分布曲线的峰值,其中曲线I的峰
14、值较曲线II的高,即12,故第I组观测小误差出现的概率较第II组的大。由于误差分布曲线到横坐标轴之间的面积恒等于1,所以当小误差出现的概率较大时,大误差出现的概率必然要小。因此,曲线I表现为较陡峭,即分布比较集中,或称离散度较小,因而观测精度较高。而曲线II相对来说较为平缓,即离散度较大,因而观测精度较低。第二节评定精度的指标研究测量误差理论的主要任务之一,是要评定测量成果的精度。在图5-3中,从两组观测的误差分布曲线可以看出:凡是分布较为密集即离散度较小的,表示该组观测精度较高;而分布较为分散即离散度较大的,则表示该组观测精度较低。用分布曲线或直方图虽然可以比较出观测精度的高低,但这种方法即
15、不方便也不实用。因为在实际测量问题中并不需要求出它的分布情况,而需要有一个数字特征能反映误差分布的离散程度,用它来评定观测成果的精度,就是说需要有评定精度的指标。在测量中评定精度的指标有下列几种:一、 中误差由上节可知(5-3)式定义的标准差是衡量精度的一种指标,但那是理论上的表达式。在测量实践中观测次数不可能无限多,因此实际应用中,以有限次观测个数n计算出标准差的估值定义为中误差m,作为衡量精度的一种标准,计算公式为 (5-6)【例5-1】有甲、乙两组各自用相同的条件观测了六个三角形的内角,得三角形的闭合差(即三角形内角和的真误差)分别为:甲:+3、+1、-2、-1、0、-3;乙:+6、-5
16、、+1、-4、-3、+5。试分析两组的观测精度。【解】用中误差公式(5-6)计算得:从上述两组结果中可以看出,甲组的中误差较小,所以观测精度高于乙组。而直接从观测误差的分布来看,也可看出甲组观测的小误差比较集中,离散度较小,因而观测精度高于乙组。所以在测量工作中,普遍采用中误差来评定测量成果的精度。注意:在一组同精度的观测值中,尽管各观测值的真误差出现的大小和符号各异,而观测值的中误差却是相同的,因为中误差反映观测的精度,只要观测条件相同,则中误差不变。在公式(5-2)中,如果令f()的二阶导数等于0,可求得曲线拐点的横坐标=m。也就是说,中误差的几何意义即为偶然误差分布曲线两个拐点的横坐标。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 建筑工程 测量 测量误差 基本知识 21
限制150内