2021版高考数学一轮复习第五章平面向量第3讲平面向量的数量积及应用举例高效演练分层突破文新人教A版.doc
《2021版高考数学一轮复习第五章平面向量第3讲平面向量的数量积及应用举例高效演练分层突破文新人教A版.doc》由会员分享,可在线阅读,更多相关《2021版高考数学一轮复习第五章平面向量第3讲平面向量的数量积及应用举例高效演练分层突破文新人教A版.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第3讲 平面向量的数量积及应用举例基础题组练1设a(1,2),b(1,1),cakb.若bc,则实数k的值等于()ABC. D解析:选A.cakb(1,2)k(1,1)(1k,2k),因为bc,所以bc0,bc(1,1)(1k,2k)1k2k32k0,所以k.2(2020湖南省五市十校联考)已知向量a,b满足|a|1,|b|2,a(a2b)0,则|ab|()A. B.C2 D解析:选A.由题意知,a(a2b)a22ab12ab0,所以2ab1,所以|ab|.故选A.3(2020广州市综合检测(一)a,b为平面向量,已知a(2,4),a2b(0,8),则a,b夹角的余弦值等于()A BC. D解
2、析:选B.设b(x,y),则有a2b(2,4)(2x,2y)(22x,42y)(0,8),所以,解得,故b(1,2),|b|,|a|2,cosa,b,故选B.4(2020四川资阳第一次模拟)已知向量a,b满足ab0,|ab|m|a|,若ab与ab的夹角为,则m的值为()A2 B.C1 D解析:选A.因为ab0,所以|ab|ab|,因为|ab|m|a|,所以(ab)2m2a2,所以a2b2m2a2,所以b2(m21)a2.又ab与ab的夹角为,所以cos,所以.解得m2或m2(舍去)故选A.5(2020郑州市第二次质量预测)在RtABC中,C90,CB2,CA4,P在边AC的中线BD上,则的最小
3、值为()A B0C4 D1解析:选A.依题意,以C为坐标原点,分别以AC,BC所在的直线为x,y轴,建立如图所示的平面直角坐标系,则B(0,2),D(2,0),所以直线BD的方程为yx2,因为点P在边AC的中线BD上,所以可设P(t,2t)(0t2),所以(t,2t),(t,t),所以t2t(2t)2t22t2,当t时,取得最小值,故选A.6(2019高考全国卷)已知a,b为单位向量,且ab0,若c2ab,则cosa,c 解析:设a(1,0),b(0,1),则c(2,),所以cosa,c.答案:7已知点M,N满足|3,且|2,则M,N两点间的距离为 解析:依题意,得|2|2|2218220,则
4、1,故M,N两点间的距离为|4.答案:48(2020山东师大附中二模改编)已知向量a,b,其中|a|,|b|2,且(ab)a,则向量a和b的夹角是 ,a(ab) 解析:由题意,设向量a,b的夹角为,因为|a|,|b|2,且(ab)a,所以(ab)a|a|2ab|a|2|a|b|cos 32cos 0,解得cos .又因为0,所以.则a(ab)|a|2|a|b|cos 326.答案:69已知向量a(2,1),b(1,x)(1)若a(ab),求|b|的值;(2)若a2b(4,7),求向量a与b夹角的大小解:(1)由题意得ab(3,1x)由a(ab),可得61x0,解得x7,即b(1,7),所以|b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 复习 第五 平面 向量 数量 应用 举例 高效 演练 分层 突破 新人
链接地址:https://www.taowenge.com/p-51400960.html
限制150内