第13讲 新定义材料理解问题-备考2022年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)解析版.doc
《第13讲 新定义材料理解问题-备考2022年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)解析版.doc》由会员分享,可在线阅读,更多相关《第13讲 新定义材料理解问题-备考2022年中考数学《二轮冲刺核心重点难点热点15讲》(全国通用)解析版.doc(41页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、硬核:狙击2020中考数学重点/难点/热点新定义材料理解问题,其特点是:(1) 创设新情境,赋予新内涵;(2) 试题呈现形式活泼新颖;(3) 一般取材于学生熟悉的生活实际,具有时代气息和教育价值这种问题一般都是先提供一种情景,或者一个解题思路,或介绍一种解题方法,或展示一个数学结论的推导过程等文字或图表材料,然后要求大家自主探索,理解其内容、思想方法,把握本质,解答试题中提出的问题对于这类题求解步骤是“阅读分析理解创新应用”,其中最关键的是理解材料的作用和用意,一般是启发你如何解决问题或为了解决问题为你提供工具及素材因此这种试题是考查大家随机应变能力和知识的迁移能力1. 涉及到定义知识的新情景
2、问题它要求学生在新定义的条件下,对提出的说法作出判断,主要考查学生阅读理解能力,分析问题和解决问题的能力解此类型题的步骤有三:(1)认真阅读,正确理解新定义的含义;(2)运用新定义解决问题;(3)得出结论2. 涉及到数学理论应用探究问题学习此类型题目,要解决后面提出的新问题,必须仔细研究前面的问题解法即前面解决问题过程中用到的知识在后面问题中很可能还会用到,因此在解决新问题时,认真阅读,理解阅读材料中所告知的相关问题和内容,并注意这些新知识运用的方法步骤3. 涉及到日常生活中的实际问题处理此类问题需要结合生活实际将图形转化为数学图形,利用数学知识进行解答。【例题1】(2019遂宁)阅读材料:定
3、义:如果一个数的平方等于1,记为i21,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部它的加、减、乘法运算与整式的加、减、乘法运算类似例如计算:(4+i)+(62i)(4+6)+(12)i10i;(2i)(3+i)63i+2ii26i(1)7i;(4+i)(4i)16i216(1)17;(2+i)24+4i+i24+4i13+4i根据以上信息,完成下面计算:(1+2i)(2i)+(2i)27i【解析】(1+2i)(2i)+(2i)22i+4i2i2+4+i24i6ii26i+17i故答案为:7i【变式1-1】(2019湘西州)阅读材
4、料:设(x1,y1),(x2,y2),如果,则x1y2x2y1,根据该材料填空,已知(4,3),(8,m),且,则m6【解析】(4,3),(8,m),且,4m3×8,m6;故答案为6;【变式1-2】(2019娄底)已知点P(x0,y0)到直线ykx+b的距离可表示为d,例如:点(0,1)到直线y2x+6的距离d据此进一步可得两条平行线yx和yx4之间的距离为2【解析】当x0时,yx0,即点(0,0)在直线yx上,因为点(0,0)到直线yx4的距离为:d2,因为直线yx和yx4平行,所以这两条平行线之间的距离为2故答案为2【例题2】(2019重庆)在数的学习过程中,我们总会对其中一些具
5、有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等现在我们来研究一种特殊的自然数“纯数”定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位(1)请直接写出1949到2019之间的“纯数”;(2)求出不大于100的“纯数”的个数,并说明理由【解析】(1)显然1949至1999都不是“纯数”,因为在通过列竖式进行n+(n+1)+(n+2)的运算时要产生进位在2000
6、至2019之间的数,只有个位不超过2时,才符合“纯数”的定义所以所求“纯数”为2000,2001,2002,2010,2011,2012;(2)不大于100的“纯数”的个数有13个,理由如下:因为个位不超过2,十位不超过3时,才符合“纯数”的定义,所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100共13个【变式2-1】对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则
7、称正整数a是完全平方数若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.【解析】(1)根据“极数”的意义得,1287,2376,8712,任意一个“极数”都是99的倍数,理由:设对于任意一个四位数且是“极数”n的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)百位数字为(9-x),千位数字为(9-y),四位数n为:1000(9-y)+100(9-x)+10y+x=9900-990y-99x=99(100-10y-x),x是0到9的整数,y是0到8的整数,100-10y-x是整数,99(100-10y-x)是99的倍数,即:任意一个“极数”都是99的倍数;
8、(2)设四位数m为“极数”的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)m=99(100-10y-x),m是四位数,m=99(100-10y-x)是四位数,即100099(100-10y-x)10000,D(m)=3(100-10y-x),303(100-10y-x)303D(m)完全平方数,3(100-10y-x)既是3的倍数也是完全平方数,3(100-10y-x)只有36,81,144,225这四种可能,D(m)是完全平方数的所有m值为1188或2673或4752或7425.【例题3】(2019安顺)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(JNplcr,155
9、01617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,17071783年)才发现指数与对数之间的联系对数的定义:一般地,若axN(a0且a1),那么x叫做以a为底N的对数,记作xlogaN,比如指数式2416可以转化为对数式4log216,对数式2log525,可以转化为指数式5225我们根据对数的定义可得到对数的一个性质:loga(MN)logaM+logaN(a0,a1,M0,N0),理由如下:设logaMm,logaNn,则Mam,Nan,MNamanam+n,由对数的定义得m+nloga(MN)又m+nlogaM+logaNloga(MN)loga
10、M+logaN根据阅读材料,解决以下问题:(1)将指数式3481转化为对数式4log381;(2)求证:logalogaMlogaN(a0,a1,M0,N0)(3)拓展运用:计算log69+log68log622【解析】(1)4log381(或log3814),故答案为:4log381;(2)证明:设logaMm,logaNn,则Mam,Nan,amn,由对数的定义得mnloga,又mnlogaMlogaN,logalogaMlogaN;(3)log69+log68log62log6(9×8÷2)log6362故答案为:2【变式3-1】阅读下面的材料:如果函数yf(x)满足
11、:对于自变量x的取值范围内的任意x1,x2,(1)若x1x2,都有f(x1)f(x2),则称f(x)是增函数;(2)若x1x2,都有f(x1)f(x2),则称f(x)是减函数例题:证明函数f(x)(x0)是减函数证明:设0x1x2,f(x1)f(x2)0x1x2,x2x10,x1x200即f(x1)f(x2)0f(x1)f(x2)函数f(x)(x0)是减函数根据以上材料,解答下面的问题:已知函数f(x)+x(x0),f(1)+(1)0,f(2)+(2)(1)计算:f(3),f(4);(2)猜想:函数f(x)+x(x0)是函数(填“增”或“减”);(3)请仿照例题证明你的猜想【解析】(1)f(x
12、)+x(x0),f(3)3,f(4)4故答案为:,(2)43,f(4)f(3)函数f(x)+x(x0)是增函数故答案为:增(3)设x1x20,f(x1)f(x2)+x1x2(x1x2)(1)x1x20,x1x20,x1+x20,f(x1)f(x2)0f(x1)f(x2)函数f(x)+x(x0)是增函数【变式3-2】(2019张家界)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为an所以,数列的一般形式可以写成:a1,a2,a3,an,一般地,如果
13、一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示如:数列1,3,5,7,为等差数列,其中a11,a23,公差为d2根据以上材料,解答下列问题:(1)等差数列5,10,15,的公差d为,第5项是(2)如果一个数列a1,a2,a3,an,是等差数列,且公差为d,那么根据定义可得到:a2a1d,a3a2d,a4a3d,anan1d,所以a2a1+da3a2+d(a1+d)+da1+2d,a4a3+d(a1+2d)+da1+3d,由此,请你填空完成等差数列的通项公式:ana1+( )d(3)4041是不是等差数列5,7,9的
14、项?如果是,是第几项?【解析】(1)根据题意得,d1055;a315,a4a3+d15+520,a5a4+d20+525,故答案为:5;25(2)a2a1+da3a2+d(a1+d)+da1+2d,a4a3+d(a1+2d)+da1+3d,ana1+(n1)d故答案为:n1(3)根据题意得,等差数列5,7,9的项的通项公式为:an52(n1),则52(n1)4041,解之得:n20194041是等差数列5,7,9的项,它是此数列的第2019项【例题4】(2019郴州)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数下面我们参照学习函数的过程与方法,探究分段函数y
15、图象与性质列表:x3210123y121012描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:点A(5,y1),B(,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1x2;(填“”,“”或“”)当函数值y2时,求自变量x的值;在直线x1的右侧函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3y4,求x3+x4的值;若直线ya与函数图象有三个不同的交点,求a的取值范围【解析】(1)如图所示:(2)
16、A(5,y1),B(,y2),A与B在y上,y随x的增大而增大,y1y2;C(x1,),D(x2,6),C与D在y|x1|上,观察图象可得x1x2;故答案为,;当y2时,x1时,有2,x1;当y2时,x1时,有2|x1|,x3或x1(舍去),故x1或x3;P(x3,y3),Q(x4,y4)在x1的右侧,1x3时,点P,Q关于x1对称,则有y3y4,x3+x42;由图象可知,0a2;【变式4-1】(2019江西)数学活动课上,张老师引导同学进行如下探究:如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2是示意图活动一如图3,将铅笔AB绕端点A顺时
17、针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C与点O重合数学思考(1)设CDxcm,点B到OF的距离GBycm用含x的代数式表示:AD的长是cm,BD的长是cm;y与x的函数关系式是,自变量x的取值范围是活动二(2)列表:根据(1)中所求函数关系式计算并补全表格x(cm)6543.532.5210.50y(cm)00.551.21.58_2.4734.295.08_描点:根据表中数值,继续描出中剩余的两个点(x,y)连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论【解析】(1)如图3中,由题意ACOAAB6(
18、cm),CDxcm,AD(6+x)(cm),BD12(6+x)(6x)(cm),故答案为:(6+x),(6x)作BGOF于GOAOF,BGOF,BGOA,y(0x6),故答案为:y,0x6(2)当x3时,y2,当x0时,y6,故答案为2,6点(0,6),点(3,2)如图所示函数图象如图所示(3)性质1:函数值y的取值范围为0y6性质2:函数图象在第一象限,y随x的增大而减小【例题5】(2019宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线(1)如图1,在ABC中,ABAC,AD是ABC的角平分线,E,F分别是BD,AD上的点求证:四边形ABEF是邻余四边形(2)
19、如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N若N为AC的中点,DE2BE,QB3,求邻余线AB的长【解析】(1)ABAC,AD是ABC的角平分线,ADBC,ADB90°,DAB+DBA90°,FAB与EBA互余,四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)ABAC,AD是ABC的角平分线,BDCD,DE2BE,BDCD3BE,CECD+DE5BE,EDF90
20、176;,点M是EF的中点,DMME,MDEMED,ABAC,BC,DBQECN,QB3,NC5,ANCN,AC2CN10,ABAC10【变式5-1】(2019扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,),特别地线段AC在直线l2上的正投影就是线段A1C请依据上述定义解决如下问题:(1)如图1,在锐角ABC中,AB5,T(AC,AB)3,则T(BC,AB);(2)如图2,在RtABC中,ACB90°
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第13讲新定义材料理解问题-备考2022年中考数学二轮冲刺核心重点难点热点15讲(全国通用)解析版
链接地址:https://www.taowenge.com/p-5145772.html
限制150内