专题03 函数-备考2022年中考数学背诵手册.docx
《专题03 函数-备考2022年中考数学背诵手册.docx》由会员分享,可在线阅读,更多相关《专题03 函数-备考2022年中考数学背诵手册.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考数学考点聚焦专题03 函数聚焦1平面直角坐标系及函数的概念与图象锁定目标:考纲指引备考点睛1.会画直角坐标系,并能根据点的坐标描出点的位置,由点的位置写出点的坐标2掌握坐标平面内点的坐标特征3了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析4能确定函数自变量的取值范围,并会求函数值.中考题型以选择题、填空题为主,有时也作为函数综合题的一个方面来考查,难度较低这部分知识常以生活实际为背景,与生活实际应用相联系进行命题,解题时往往要用数形结合、分类讨论等数学方法进行思考锁定考点:考点一平面直角坐标系与点的坐标特征 1平面直角坐标系如图,在平面内,两条互相竖直的数轴
2、的交点O称为原点,水平的数轴叫x轴(或横轴),竖直的数轴叫y轴(或纵轴),整个坐标平面被x轴、y轴分割成四个象限2各象限内点的坐标特征点P(x,y)在第一象限x0,y0;点P(x,y)在第二象限x0,y0;点P(x,y)在第三象限x0,y0;点P(x,y)在第四象限x0,y0. 3坐标轴上的点的坐标的特征点P(x,y)在x轴上y0,x为任意实数;点P(x,y)在y轴上x0,y为任意实数;点P(x,y)在坐标原点x0,y0.考点二特殊点的坐标特征1对称点的坐标特征点P(x,y)关于x轴的对称点P1的坐标为(x,y);关于y轴的对称点P2的坐标为(x,y);关于原点的对称点P3的坐标为(x,y)2
3、与坐标轴平行的直线上点的坐标特征平行于x轴:横坐标不同,纵坐标相同;平行于y轴:横坐标相同,纵坐标不同3各象限角平分线上点的坐标特征第一、三象限角平分线上的点横坐标与纵坐标相同,第二、四象限角平分线上的点横坐标与纵坐标互为相反数考点三距离与点的坐标的关系1点与原点、点与坐标轴的距离(1)点P(a,b)到x轴的距离等于点P的纵坐标的绝对值,即|b|;点P(a,b)到y轴的距离等于点P的横坐标的绝对值,即|a|.(2)点P(a,b)到原点的距离等于点P的横、纵坐标的平方和的算术平方根,即.2坐标轴上两点间的距离(1)在x轴上两点P1(x1,0),P2(x2,0)间的距离|P1P2|x1x2|.(2
4、)在y轴上两点Q1(0,y1),Q2(0,y2)间的距离|Q1Q2|y1y2|.(3)在x轴上的点P1(x1,0)与y轴上的点Q1(0,y1)之间的距离|P1Q1|. 考点四函数有关的概念及图象1函数的概念一般地,在某一变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说y是x的函数,x是自变量2常量和变量在某一变化过程中,保持一定数值不变的量叫做常量;可以取不同数值的量叫做变量3函数的表示方法函数主要的表示方法有三种:(1)解析法;(2)列表法;(3)图象法4函数图象的画法(1)列表:在自变量的取值范围内取值,求出相应的函数值;(2)描点:以x的值为横坐标,
5、对应y的值作为纵坐标,在坐标平面内描出相应的点;(3)连线:按自变量从小到大的顺序用光滑曲线连接所描的点考点五函数自变量取值范围的确定确定自变量取值范围的方法:1自变量以分式形式出现,它的取值范围是使分母不为零的实数2当自变量以二次方根形式出现,它的取值范围是使被开方数为非负数;以三次方根出现时,它的取值范围为全体实数3当自变量出现在零次幂或负整数次幂的底数中,它的取值范围是使底数不为零的实数4在一个函数关系式中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分聚焦2一次函数锁定目标:考纲指引备考点睛1.理解一次函数的概念2会画一次函数的图象,掌握一次函数的基本性
6、质3会求一次函数解析式,并能用一次函数解决实际问题.一次函数是中考的重点,主要考查图象的性质及解析式的确定;中考题型有选择题、填空题、解答题以及与方程、不等式相结合的综合应用题锁定考点:考点一一次函数和正比例函数的定义一般地,如果ykxb(k,b是常数,k0),那么y叫做x的一次函数特别地,当b0时,一次函数ykxb就成为ykx(k是常数,k0),这时y叫做x的正比例函数考点二一次函数的图象与性质1一次函数的图象(1)一次函数ykxb(k0)的图象是经过点(0,b)和的一条直线(2)正比例函数ykx(k0)的图象是经过点(0,0)和(1,k)的一条直线2一次函数图象的性质一次函数ykxb,当k
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题03函数-备考2022年中考数学背诵手册
限制150内