2022年高考数学必考学问点.docx
《2022年高考数学必考学问点.docx》由会员分享,可在线阅读,更多相关《2022年高考数学必考学问点.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年高考数学必考学问点 2022年高考数学必考学问点有哪些你知道吗?数学,是打开科学大门的一把钥匙。数学,既熬炼了我们的思维,又给平淡的生活增加了几分乐趣。一起来看看2022年高考数学必考学问点,欢迎查阅! 高考数学必考学问点 一、求动点的轨迹方程的基本步骤 建立适当的坐标系,设出动点M的坐标; 写出点M的集合; 列出方程=0; 化简方程为最简形式; 检验。 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。 直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。 定义法:假如能够确定动点
2、的轨迹满意某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。 相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满意的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。 参数法:当动点坐标x、y之间的直接关系难以找到时,往往先查找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。 交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 -直译法:求动点轨迹方程的一般步骤 建系建立适
3、当的坐标系; 设点设轨迹上的任一点P(x,y); 列式列出动点p所满意的关系式; 代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简; 证明证明所求方程即为符合条件的动点轨迹方程。 高中数学各学问点公式定理记忆口诀 集合与函数 内容子交并补集,还有幂指对函数。性质奇偶与增减,观看图象最明显。 复合函数式出现,性质乘法法则辨,若要具体证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种状况求交集。 两个互为反函数
4、,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解特别有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 三角函数 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。?nbsp; 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号
5、原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,留意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。 万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简洁三角的方程,化为最简求解集; 不等式 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。 高次向着低次代,步
6、步转化要等价。数形之间互转化,关心解答作用大。 证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。 直接困难分析好,思路清楚综合法。非负常用基本式,正面难则反证法。 还有重要不等式,以及数学归纳法。图形函数来关心,画图建模构造法。 数列 等差等比两数列,通项公式N项和。两个有限求极限,四则运算挨次换。 数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换, 取长补短高斯法,裂项求和公式算。归纳思想特别好,编个程序好思索: 一算二看三联想,猜想证明不行少。还有数学归纳法,证明步骤程序化: 首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来确定。 复数 虚数单位i一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年高 数学 必考 学问
限制150内