专题44:第8章几何中的最值问题之三角形的面积-备战2022中考数学解题方法系统训练(全国通用)(原卷版).doc
《专题44:第8章几何中的最值问题之三角形的面积-备战2022中考数学解题方法系统训练(全国通用)(原卷版).doc》由会员分享,可在线阅读,更多相关《专题44:第8章几何中的最值问题之三角形的面积-备战2022中考数学解题方法系统训练(全国通用)(原卷版).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、44第8章几何中的最值问题之三角形的面积一、单选题1如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则ABC的面积是( )A12B24C36D482将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是 ( )A4cm2B8cm2C12cm2D16cm23如图,已知直线与x轴、y轴分别交于B、C两点,点A是以D(0,2)为圆心,2为半径的D上的一个动点,连接AC、AB,则ABC面积的最小值是( )A30B29C28D274如图,AOB45°
2、,点M、N分别在射线OA、OB上,MN6,OMN的面积为12,P是直线MN上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,OP1P2的面积最小值为()A6B8C12D185如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则CEF面积的最小值是( )A16B15C12D11二、填空题6如图,在ABC中,ABAC,BAC120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE若AB
3、6,则BDE面积的最大值为_7如图,O的直径为5,在O上位于直径AB的异侧有定点C和动点P,已知BC:CA4:3,点P在半圆弧AB上运动(不与A,B重合),过C作CP的垂线CD交PB的延长线于D点则PCD的面积最大为_8已知AB为半圆的直径,AB2,DAAB,CBAB,AD1,BC3,点P为半圆上的动点,则AD,AB,BC,CP,PD围成的图形的面积的最大值是_9如图,在矩形ABCD中,ACB=30°,BC=2,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE设AG=a,则点G到BC边的距离为_(用含a的代数式表示)
4、,ADG的面积的最小值为_10如图,直线AB交坐标轴于A(-2,0),B(0,-4),点P在抛物线上,则ABP面积的最小值为_ 三、解答题11如图,已知抛物线与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3) (1)求抛物线的解析式; (2)抛物线的对称轴上是否存在点D,使BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由; (3)点P是抛物线上AC下方的一个动点,是否存在点p,使PAC的面积最大?若存在,求出点P的坐标,若不存在,请说明理由12已知,如图,矩形ABCD中,AD6,DC7,菱形EFGH的三个顶点E,G,H分别在矩形
5、ABCD的边AB,CD,AD上,AH2,连接CF(1)当四边形EFGH为正方形时,求DG的长;(2)当DG6时,求FCG的面积;(3)求FCG的面积的最小值13如图,抛物线与x轴交于点,点,与y轴交于点C,且过点点P、Q是抛物线上的动点(1)求抛物线的解析式;(2)当点P在直线OD下方时,求面积的最大值(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标14已知抛物线ya(x1)2过点(3,4),D为抛物线的顶点(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,1),且BDC90°,求点C的坐标:(3)如图,直线ykx+1k与抛物线交于P、Q两点,PDQ90
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 44 几何 中的 问题 三角形 面积 备战 2022 中考 数学 解题 方法 系统 训练 全国 通用 原卷版
链接地址:https://www.taowenge.com/p-5146002.html
限制150内