专题55:第12章压轴题之动态几何类-备战2022中考数学解题方法系统训练(全国通用)(解析版).doc





《专题55:第12章压轴题之动态几何类-备战2022中考数学解题方法系统训练(全国通用)(解析版).doc》由会员分享,可在线阅读,更多相关《专题55:第12章压轴题之动态几何类-备战2022中考数学解题方法系统训练(全国通用)(解析版).doc(59页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、55第12章压轴题之动态几何类一、单选题1如图,在四边形中,是的中点点以每秒1个单位长度的速度从点出发,沿向点运动;点同时以每秒3个单位长度的速度从点出发,沿向点运动点停止运动时,点也随之停止运动若以点为顶点的四边形是平行四边形,则点运动的时间为( )A1BC2或D1或【答案】D【分析】要使得以P、Q、E、D为顶点的四边形是平行四边形,已知,即要使PD=EQ即可,设点P的运动时间为t (0t6) 秒,分别表示出PD,EQ的长度,根据PD=EQ列方程求解即可【解答】设点P的运动时间为t (0t6) 秒,则AP=t,CQ=3t,由E是BC的中点可得:BE=EC=8,要使得以P、Q、E、D为顶点的四
2、边形是平行四边形,已知,即要使PD=EQ即可(1)如图:点Q位于点E右侧时,PD=6t,CQ=3t,EQ=83t,6t =83t,t=1(秒);(2)如图:点Q位于点E左侧时,PD=6t,CQ=3t,EQ=3t8,6t =3t8,t=(秒)综上所述:P的运动时间为1或秒故选:D【点评】本题主要考查平行四边形的判定方法以及一元一次方程的应用,熟记平行四边形的判定方法,根据对应边相等列方程是解题关键2如图,如图,在等腰中,点P从点B出发,以的速度沿BC方向运动到点C停止,同时点Q从点B出发以2cm的速度沿运动到点C停止若的面积为y,运动时间为,则下列图象中能大致反映y与x之间关系的是( )ABCD
3、【答案】D【分析】作AHBC于H,根据等腰三角形的性质得BH=CH,利用B=30°可计算出AH=AB=2,BH=AH=,BC=2BH=,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需4s,然后分0x2和2x4两种情况进行计算,即可得到答案【解答】解:如图,作AHBC于H,AB=AC=4cm,BH=CH,B=30°,AH=AB=2,BH=AH=,BC=2BH=,点P运动的速度为cm/s,Q点运动的速度为2cm/s,点P从B点运动到C需4s,Q点运动到C需4s,当0x2时,如图,作QDBC于D, BQ=2x,BP=,在RtBDQ中,DQ=BQ=x,开口向上;当2x4时
4、,如图,作QEBC于E, CQ=82x,BP=,在RtCEQ中,C=B=30°,EQ=,开口向下,综上所述,故选:D【点评】本题考查了动点问题的函数图象,通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数的图象与性质解决问题3如图,点A(a,1),B(b,3)都在双曲线上,点P,Q分别是x轴,y轴上的动点,则四边形ABQP周长的最小值为( )ABCD【答案】B【分析】先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A点关于x轴的对称点D,B点关于y轴的对称点C,根据对称的性质得到C点坐标为(1,3),D点坐标为(-3,-1),CD
5、分别交x轴、y轴于P点、Q点,根据两点之间线段最短得此时四边形ABPQ的周长最小,然后利用两点间的距离公式求解可得【解答】解:点A(a,1),B(b,3)都在双曲线y=-上,a×1=3b=-3,a=-3,b=-1,A(-3,1),B(-1,3),作A点关于x轴的对称点D(-3,-1),B点关于y轴的对称点C(1,3),连接CD,分别交x轴、y轴于P点、Q点,此时四边形ABPQ的周长最小,QB=QC,PA=PD,四边形ABPQ周长=AB+BQ+PQ+PA=AB+CD,AB= ,四边形ABPQ周长最小值为2+4=6,故选:B【点评】此题考查反比例函数的综合题,勾股定理,掌握反比例函数图象
6、上点的坐标特征、熟练运用两点之间线段最短解决有关几何图形周长最短的问题是解题的关键4如图,菱形ABCD中,AB=2,B=120°,点M是AD的中点,点P由点A出发,沿ABCD作匀速运动,到达点D停止,则APM的面积y与点P经过的路程x之间的函数关系的图象大致是( ) A B C D 【答案】B【分析】分类讨论:当0x2,如图1,作PHAD于H,AP=x,根据菱形的性质得A=60°,AM=1,则APH=30°,根据含30度的直角三角形三边的关系得到在RtAH=x,PH=x,然后根据三角形面积公式得y=AMPH=x;当2x4,如图2
7、,作BEAD于E,AP+BP=x,根据菱形的性质得A=60°,AM=1,AB=2,BCAD,则ABE=30°,在RtABE中,根据含30度的直角三角形三边的关系得AE=1,PH=,然后根据三角形面积公式得y=AMBE=;当4x6,如图3,作PFAD于F,AB+BC+PC=x,则PD=6-x,根据菱形的性质得ADC=120°,则DPF=30°,在RtDPF中,根据含30度的直角三角形三边的关系得DF=(6-x),PF=DF=(6-x),则利用三角形面积公式得y=AMPF=-x+,最后根据三个解析式和对应的取值范围对各选项进行判断【解答】当点P在AB上运动时
8、,即0x2,如图1,作PHAD于H,AP=x,菱形ABCD中,AB=2,B=120°,点M是AD的中点,A=60°,AM=1,APH=30°,在RtAPH中,AH=AP=x,PH=AH=x,y=AMPH=×1×x=x; 当点P在BC上运动时,即2x4,如图2,作BEAD于E,AP+BP=x,四边形ABCD为菱形,B=120°,A=60°,AM=1,AB=2,BCAD,ABE=30°,在RtABE中,AE=AB=1,PH=AE=,y=AMBE=×1×=;当点P在CD上运动时,即4x6,如图3,作P
9、FAD于F,AB+BC+PC=x,则PD=6-x,菱形ABCD中,B=120°,ADC=120°,DPF=30°,在RtDPF中,DF=DP=(6-x),PF=DF=(6-x),y=AMPF=×1×(6-x)=(6-x)=-x+,APM的面积y与点P经过的路程x之间的函数关系的图象为三段:当0x2,图象为线段,满足解析式y=x;当2x4,图象为平行于x轴的线段,且到x轴的距离为;当4x6,图象为线段,且满足解析式y=-x+故选B【点评】本题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自
10、变量的取值范围5如图,在菱形中,点、同时由、两点出发,分别沿、方向向点匀速移动(到点为止),点的速度为,点的速度为,经过秒为等边三角形,则的值为( )ABCD【答案】D【分析】连接BD,证出ADEBDF,得到AE=BF,再利用AE=t,CF=2t,则BF=BCCF=52t求出时间t的值【解答】解:连接BD,四边形ABCD是菱形,ADC=120°,AB=AD,ADB=ADC=60°,ABD是等边三角形,AD=BD,又DEF是等边三角形,EDF=DEF=60°,又ADB=60°,ADE=BDF,在ADE和BDF中,ADEBDF(ASA),AE=BF,AE=t
11、,CF=2t,BF=BCCF=52t,t=52tt=,故选:D.【点评】本题考查全等三角形,等边三角形,菱形等知识,熟练掌握全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质为解题关键6已知:如图,长方形ABCD中,E是边AD上一点,且AE=6cm,AB=8cm,点P从B出发,沿折线BEEDDC匀速运动,运动到点C停止P的运动速度为2cm/s,运动时间为t(s),BPC的面积为y(cm2),y与t的函数关系图象如图,则下列结论正确的有()a=7;b=10;当t=3s时PCD为等腰三角形;当t=10s时,y=12cm2A1个B2个C3个D4个【答案】B【分析】根据点P运动的速度,可以确定
12、某时刻点P的具体位置,再结合BPC的面积与时间t函数关系的图象,可以得到问题的解答【解答】当P点运动到E点时,BPC面积最大,结合函数图象可知当t=5时,BPC面积最大为40,BE=5×2=10BCAB=40,BC=10则ED=106=4当P点从E点到D点时,所用时间为4÷2=2s,a=5+2=7故正确;P点运动完整个过程需要时间t=(10+4+8)÷2=11s,即b=11,错误;当t=3时,BP=AE=6,又BC=BE=10,AEB=EBC(两直线平行,内错角相等),BPCEAB,CP=AB=8,CP=CD=8,PCD是等腰三角形,故正确;当t=10时,P点运动
13、的路程为10×2=20cm,此时PC=2220=2,BPC面积为10×2=10cm2,错误,正确的结论有故选:B【点评】本题考查矩形性质与函数图象的综合应用,正确理解函数图象各点意义、综合应用等腰三角形和平行线的性质是解题关键7如图,正方形中,点、分别为边、中点,动点从点出发,沿方向移动,连接,过作交边于点;连接,点为中点,连接;设为,的面积为;则与之间函数图象大致为( )ABCD【答案】A【分析】分两种情况讨论,当点P在线段ED上移动时,证得RtQBGRtPEG,求得(),当点P在线段FD上移动时,易求得(),根据图象的性质即可判断【解答】不妨设正方形的边长为2,则BC=
14、AD=AB=CD=2,AE=DF=BG=1,当点P在线段ED上移动时,连接EG,如图所示:,PGQ=B=90,QGB+QGE =90,QGE +EGP =90,QGB=EGP,RtQBGRtPEG,BQ,BG=1,EG2,PE=2BQ=,AQ=AB-BQ=,AP=AE+PE=,点为中点,取值范围是:当P、E重合时,由PE=0,得,当P、D重合时,由PE=1,得,(),图象是开口向下的在区间()r的一段抛物线;排除选项B和C;当点P在线段FD上移动时,连接AP,如图所示:AQ=AB-BQ=, 点为中点,取值范围是:当P、F重合时,(),图象是经过一、二、四象限在区间()的一条线段;综上,只有A符
15、合题意,故选:A【点评】本题考查了动点问题的函数图象,涉及的知识点有正方形的性质,相似三角形的判定和性质,有一定难度8如图的顶点分别是,点,分别为,的中点,连,交于点,过点作交的延长线于点若绕原点顺时针旋转,每次旋转,则第2020次旋转结束时,点的坐标是( )ABCD【答案】B【分析】利用三角形的重心和等腰直角三角形的性质确定P(2,2),确定每4次一个循环,由于2020=4×55,所以第2020次旋转结束时,P点返回原地,即可求出旋转后的点P的坐标【解答】点C,D分别为BO,BA的中点,点G是三角形的重心,AG=2CG,B(0,2),C(0,1),A(3,1),AC=3,ACx轴,
16、 CG=1,AG=2,OC=1,OC=CG,COG是等腰直角三角形,CGO=45°,AGP=45°,APOD,AGP是等腰直角三角形,AG边上的高为1,等腰直角三角形AGP 的斜边AG边上的高也是中线,P(2,2),2020=4×55,每4次一个循环,第2020次旋转结束时,P点返回原处,点P的坐标为(2,2)故选:B【点评】本题考查了三角形重心的判定和性质,等腰直角三角形的判定和性质,坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30°,45°,60°,90
17、76;,180°9如图1,在矩形中,动点从点出发,沿方向运动,当点到达点时停止运动,过点作交于点,设点的运动路程为,图2表示的是与的函数关系的大致图象,则函数图象中的值为( )ABCD【答案】C【分析】由图2知:AB=6,当点M在BC上时,画出图形根据,得出比例式,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题【解答】解:由图2知:AB=6,则CN=BM=6-x,即y=6-x;如图所示,当点M在BC上时,AB=6则BM=x-6,NC=y, 在矩形中,MNAM,AMN=90°,CMN+AMB=90°,MAB+AMB=90°,CM
18、N=MAB,在CMN和BAM中,CMN=MAB,C=B=90°,CMNBAM,由二次函数图象对称性可得M在BC中点时,y=CN有最大值,此时BM=CM=x-6,x=10或2(不合题意舍去)BM=CM=4,BC=8a=6+8=14故选:C【点评】本题考查了二次函数动点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键10如图,在平面直角坐标系中,Q是直线y=x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点,连接,则的最小值为()ABCD【答案】B【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q的坐标,然后根
19、据勾股定理并利用二次函数的性质即可解决问题【解答】解:作QMx轴于点M,QNx轴于N,设Q(,),则PM=,QM=,PMQ=PNQ=QPQ=90°,QPM+NPQ=PQN+NPQ,QPM=PQN,在PQM和QPN中,PQMQPN(AAS),PN=QM=,QN=PM=,ON=1+PN=,Q(,),OQ2=()2+()2=m25m+10=(m2)2+5,当m=2时,OQ2有最小值为5,OQ的最小值为,故选:B【点评】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键二、填空题11如图,
20、是正方形的外接圆,点是劣弧上的任意一点,连接,作于点,连接则当点从点出发按顺时针方向运动到点时,长的取值范围为_【答案】【分析】首先根据题意可知,当点与点重合时最长,的最大值为;再证明点的运动轨迹为以为直径的,通过添加辅助线连接交于点,连接,由线段公理可知,当点与点重合时最短,的最小值为即可得解【解答】解:由题意可知,当点与点重合时最长此时,即的最大值为点的运动轨迹为以为直径的,连接交于点,连接,如图:在中,由两点之间,线段最短可知,当点与点重合时最短的最小值为【点评】本题考查了正多边形和圆的动点问题、的圆周角所对的弦为直径、勾股定理、线段公理等知识点,解题的关键是确定取最大值和最小值时点的位
21、置,属于中考常考题型,难度中等12如图,垂足为点,射线,垂足为点,一动点从点出发以3厘米秒沿射线运动,点为射线上一动点,随着点运动而运动,且始终保持,当点经过_秒时,与全等【答案】0,4,12,16【分析】设点E经过t秒时,DEBBCA;由斜边ED=CB,分类讨论BE=AC或BE=AB或AE=0时的情况,求出t的值即可【解答】分情况讨论:(1)设点E经过t秒时,DEBBCA,此时AE=3t,当点E在点B的左侧时,BE=AC,AE=AB-BE=24-12=12,3t=12,t=4;当点E在点B的右侧时,BE=AC,AE=AB+BE=24+12=36,3t=36,t=12;(2)设点E经过t秒时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 55 12 压轴 动态 几何 备战 2022 中考 数学 解题 方法 系统 训练 全国 通用 解析

链接地址:https://www.taowenge.com/p-5146083.html
限制150内