备考2022数学专题08 二次函数综合问题(解析版).doc
《备考2022数学专题08 二次函数综合问题(解析版).doc》由会员分享,可在线阅读,更多相关《备考2022数学专题08 二次函数综合问题(解析版).doc(57页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、决胜2021中考数学压轴题全揭秘精品专题09 二次函数综合性问题【考点1】二次函数与经济利润问题【例1】(2020·辽宁朝阳·中考真题)某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)直接写出y与x的关系式_;(2)求公司销售该商品获得的最大日利润;(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数
2、关系不变的情况下,该商品的日销售最大利润是1500元,求a的值【答案】(1);(2)当销售单价是75元时,最大日利润是2025元;(3)70【分析】(1)根据题中所给的表格中的数据,可以直接写出其关系式;(2)根据利润等于每件的利润乘以件数,再利用配方法求得其最值;(3)根据题意,列出关系式,再分类讨论求最值,比较得到结果.【详解】(1)设解析式为,将和代入,可得,解得,所以y与x的关系式为,所以答案为;(2) ,抛物线开口向下,函数有最大值当时,答:当销售单价是75元时,最大日利润是2025元 (3)当时,解得 ,有两种情况时,在对称轴左侧,w随x的增大而增大,当时,时,在范围内,这种情况不
3、成立,【点睛】该题考查的是有关函数的问题,涉及到的知识点有一次函数解析式的求解,二次函数应用题,在解题的过程中,注意正确找出等量关系是解题的关键,属于简单题目.【变式1-1】(2020·四川遂宁·中考真题)新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室种植基地销售人员为了支持本次活动,为
4、该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?【答案】(1)A、B两种花苗的单价分别是20元和30元;(2)本次购买至少准备240元,最多准备290元【分析】(1)设A、B两种花苗的单价分别是x元和y元,则,即可求解;(2)设购买B花苗x盆,则购买A花苗为(12x)盆,设总费用为w元,由题意得:w20(12x)+(30x)xx2+10x+240(0x12),即可求解【详解】解:(1)设A、B两种花苗的单价分别是x元和y元,则,解得,答:A、B两种花苗的单价分别是20元和30元;(2)设购买B花苗x盆,则购
5、买A花苗为(12x)盆,设总费用为w元,由题意得:w20(12x)+(30x)xx2+10x+240(0x12),-10故w有最大值,当x5时,w的最大值为265,当x12时,w的最小值为216,故本次购买至少准备216元,最多准备265元【点睛】本题考查二次函数的实际应用,根据题意准确找到等量关系,建立函数模型是解题的关键.【变式1-2】(2020·辽宁盘锦·中考真题)某服装厂生产品种服装,每件成本为71元,零售商到此服装厂一次性批发品牌服装件时,批发单价为元,与之间满足如图所示的函数关系,其中批发件数为10的正整数倍(1)当时,与的函数关系式为_(2)某零售商到此服装厂
6、一次性批发品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发品牌服装件,服装厂的利润为元,问:为何值时,最大?最大值是多少?【答案】(1) (2)18000元 (3)或;3800【分析】(1)将两点(100,100),(300,80)代入到一次函数解析式,利用待定系数法即可求解;(2)将x=200代入到(1)求出y的值,最后求得答案;(3)当时,求得y的最大值,当求得y的最大值,最后作答【详解】解:(1)当100x300时,设与的函数关系式为y=kx+b,(k0),将点(100,100),(300,80)代入y=kx+b ,(k0), ,解,得 故答案填:(2)当时,元答:零售
7、商一次性批发200件,需要支付18000元(3)当时,抛物线开口向下当时,随的增大而增大又为10的正整数倍时,最大,最大值是3800当时,随的增大而减小又为10的正整数倍时,最大,最大值是3800当时,随的增大而增大时,最大,最大值是3600当或时,最大,最大值是3800【点睛】本题主要考查一次函数和二次函数的应用,根据题意列出函数表达式,熟练运用函数的性质是解决问题的关键【考点2】二次函数与几何图形问题【例2】(2020·四川雅安·)如图,已知边长为10的正方形是边上一动点(与不重合),连结是延长线上的点,过点作的垂线交的角平分线于点,若(1)求证:;(2)若,求的面积;
8、(3)请直接写出为何值时,的面积最大【答案】(1)见解析;(2)8;(3)5【分析】(1)先判断出CG=FG,再利用同角的余角相等,判断出BAE=FEG,进而得出ABEEGF,即可得出结论;(2)先求出BE=8,进而表示出EG=2+FG,由BAEGEF,得出,求出FG,最后用三角形面积公式即可得出结论;(3)同(2)的方法,即可得出SECF=,即可得出结论.【详解】解:(1)四边形ABCD是正方形,DCG=90°,CF平分DCG,FCG=DCG=45°,G=90°,GCF=CFG=45°,FG=CG,四边形ABCD是正方形,EFAE,B=G=AEF=90
9、°,BAE+AEB=90°,AEB+FEG=90°,BAE=FEG,B=G=90°,BAEGEF;(2)AB=BC=10,CE=2,BE=8,FG=CG,EG=CE+CG=2+FG,由(1)知,BAEGEF,FG=8,SECF=CEFG=×2×8=8;(3)设CE=x,则BE=10-x,EG=CE+CG=x+FG,由(1)知,BAEGEF,FG=10-x,SECF=×CE×FG=×x(10-x)=,当x=5时,SECF最大=,当EC=5时,的面积最大.【点睛】此题是相似形综合题,主要考查了正方形的性质,角
10、平分线,相似三角形的判定和性质,三角形的面积公式,判断出BAEGEF是解本题的关键【变式2-1】(2020·山东日照·中考真题)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计)(1)若四块矩形花圃的面积相等,求证:AE3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围【答案】(1)见解析;(2),见解析【分析】(1)由题意易得AM2ME,故可直接得证;(2)由(1)及题意得2AB+GH+3BC10
11、0,设BC的长度为xm,矩形区域ABCD的面积为ym2即可得出函数关系式【详解】解:(1)证明:矩形MEFN与矩形EBCF面积相等,MEBE,AMGH四块矩形花圃的面积相等,即S矩形AMDND2S矩形MEFN,AM2ME,AE3BE;(2)篱笆总长为100m,2AB+GH+3BC100,即,设BC的长度为xm,矩形区域ABCD的面积为ym2,则,解得,【点睛】本题主要考查二次函数的实际应用,关键是根据题意得到线段的等量关系,然后列出函数关系式即可【变式2-2】(2020·广东深圳·中考真题)如图1,抛物线y=ax2+bx+3(a0)与x轴交于A(-3,0)和B(1,0),与
12、y轴交于点C,顶点为D(1)求解抛物线解析式;(2)连接AD,CD,BC,将OBC沿着x轴以每秒1个单位长度的速度向左平移,得到,点O、B、C的对应点分别为点,设平移时间为t秒,当点O'与点A重合时停止移动记与四边形AOCD的重叠部分的面积为S,请直接写出S与时间t的函数解析式;(3)如图2,过抛物线上任意一点M(m,n)向直线l:作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME-MF=?若存在,请求F点的坐标;若不存在,请说明理由【答案】(1)y=-x2-2x+3;(2);(3)存在,【分析】(1)运用待定系数法解答即可;(2)分0<t<1、三种情况解答
13、即可;(3)设F点坐标为(-1,t)、点M(m,n),则有、进而求得ME,然后分别通过线段的和差和勾股定理求得MF的长,然后得到等式、化简、对比即可求得t即可【详解】解:(1)将A(-3,0)和B(1,0)代入抛物线解析式y=ax2+bx+3中,可得:,解得:抛物线解析式为y=-x2-2x+3;(2)y=-x2-2x+3= 抛物细的顶点坐标为(-1,4)A(-3,0)在直线AD上设抛物线解析式为y=kx+b则有 ,解得:直线AD的解析式为y=2x+6,当在AD上时,令y=3,即3=2x+6,解得x=-如图所示,当0<t<1时,OC=OC=3,OB=OB=1,OB=1-tOC/OCO
14、M,即,解得:OM=3(1-t)S= SOBC- SOMB= 当时,完全在四边形AOCD内,当时,如图所示,过G点作GH,设HG=x,GH/AB,HGK=KAO,直线AD的解析式为y=2x+6, , ,KO=2AOOC= CK+AOS=SOBC- SCGK= 综上:;(3)假设存在,设F点坐标为(-1,t)、点M(m,n)而=-,即【点睛】本题属于二次函数综合题,考查了二次函数的解析式、解直角三角形、勾股定理、分类讨论思想和存在性问题,其中掌握二次函数的性质和分类讨论思想是解答本题的关键【考点3】二次函数与抛物线形问题【例3】(2020·山东青岛·中考真题)某公司生产型活动
15、板房成本是每个425元图表示型活动板房的一面墙,它由长方形和抛物线构成,长方形的长,宽,抛物线的最高点到的距离为(1)按如图所示的直角坐标系,抛物线可以用表示,求该抛物线的函数表达式;(2)现将型活动板房改造为型活动板房如图,在抛物线与之间的区域内加装一扇长方形窗户,点,在上,点,在抛物线上,窗户的成本为50元已知,求每个型活动板房的成本是多少?(每个型活动板房的成本每个型活动板房的成本+一扇窗户的成本)(3)根据市场调查,以单价650元销售(2)中的型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个公司每月最多能生产160个型活动板房不考虑其他因素,公司将销售单价(元)定
16、为多少时,每月销售型活动板房所获利润(元)最大?最大利润是多少?【答案】(1)(2)500(3)n=620时,w最大=19200元【分析】(1)根据图形及直角坐标系可得到D,E的坐标,代入即可求解;(2)根据N点与M点的横坐标相同,求出N点坐标,再求出矩形FGMN的面积,故可求解;(3)根据题意得到w关于n的二次函数,根据二次函数的性质即可求解【详解】(1)由题可知D(2,0),E(0,1)代入到得解得抛物线的函数表达式为;(2)由题意可知N点与M点的横坐标相同,把x=1代入,得y=N(1,)MN=m,S四边形FGMN=GM×MN=2×=,则一扇窗户的价格为×50
17、=75元因此每个B型活动板的成本为425+75=500元;(3)根据题意可得w=(n-500)(100+20×)=-2(n-600)2+20000,一个月最多生产160个,100+20×160解得n620-20n620时,w随n的增大而减小当n=620时,w最大=19200元【点睛】此题主要考查二次函数的综合运用,解题的关键是熟知待定系数法、二次函数的图像与性质【变式3-1】(2020·浙江初三其他模拟)一隧道内设双行公路,隧道的高MN为6米下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽
18、CD是2米(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离若行车道总宽度PQ(居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG,使H、G两点在抛物线上,A、B两点在地面DE上,设GH长为n米,“脚手架”三根木杆AG、GH、HB的长度之和为L,当n为何值时L最大,最大值为多少?【答案】(1)y=-x2+4;(2)能安全通过,见解析;(3)n=4时,L有最大值,最大值为14【分析】(1)根据题意和函数图象,可以设出抛物线的解析式,然后根据
19、抛物线过点F和点M即可求得该抛物线的解析式;(2)先求出抛物线的解析式,再根据题意判断该隧道能通过的车辆的最高高度,便可判断该车辆能安全通过(3)射出H的坐标,用n表示出L,利用二次函数的性质求解即可【详解】解:(1)由题意得M(0,4),F(4,0)可设抛物线的解析式为y=ax2+4,将F(4,0)代入y=ax2+4中,得a=-,抛物线的解析式为y=-x2+4;(2)当x=3,y=,+2-=3.253.2,能安全通过;(3)由GH=n,可设H(),GH+GA+BH=n+()×2+2×2=,L=,a0,抛物线开口向下,当n=-=4时,L有最大值,最大值为14【点睛】本题考查
20、了二次函数的实际应用,解题的关键是要注意自变量的取值范围必须使实际问题有意义【变式3-2】(2020·河北初三一模)有一座抛物线型拱桥,在正常水位时水面的宽为18米,拱顶离水面的距离为9米,建立如图所示的平面直角坐标系.(1)求此抛物线的解析式;(2)一艘货船在水面上的部分的横断面是矩形.如果限定矩形的长为12米,那么要使船通过拱桥,矩形的高不能超过多少米?若点,都在抛物线上,设,当的值最大时,求矩形的高.【答案】(1)此抛物线的解析式为y=-x2;(2)要使船通过拱桥,矩形的高DE不能超过5米;矩形CDEF的高为米.【分析】(1)根据题意设抛物线的解析式为y=ax2(a0)把已知坐
21、标(9,-9)代入解析式求得a即可;(2)已知CD=12,把已知坐标代入函数关系式可求解;设DM=a米,可得EF=CD=2DM=2a米、DE=FC=9-a2,根据L=EF+DE+CF求得L的值最大时a的值,代入DE=9-a2问题可解【详解】解:(1)根据题意,设抛物线解析式为:y=ax2,将点(9,-9)代入,得:81a=-9,解得:a=-,此抛物线的解析式为y=-x2;(2)当x=6时,y=-×36=-4,9-4=5,矩形的高DE不能超过5米,才能使船通过拱桥;要使船通过拱桥,矩形的高DE不能超过5米;设DM=a米,则EF=CD=2DM=2a米,当x=a时,y=-a2,DE=FC=
22、9-a2,则L=2a+2(9-a2)=-a2+2a+18=-(a-)2+,当a=时,L取得最大值,矩形CDEF的高为米【点睛】本题考查了运用待定系数法求二次函数的解析式及二次函数的应用,根据已知条件得出L的函数关系式及其最值情况是解题关键1(2020·安徽中考真题)如图和都是边长为的等边三角形,它们的边在同一条直线上,点,重合,现将沿着直线向右移动,直至点与重合时停止移动在此过程中,设点移动的距离为,两个三角形重叠部分的面积为,则随变化的函数图像大致为( )A B C D 【答案】A【分析】根据图象可得出重叠部分三角形的边长为x,根据特殊角三角函数可得高为,由此得出面积y是x的二次函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备考2022数学专题08二次函数综合问题(解析版)
限制150内