备考2022数学专题04 几何最值存在性问题(原卷版).doc
《备考2022数学专题04 几何最值存在性问题(原卷版).doc》由会员分享,可在线阅读,更多相关《备考2022数学专题04 几何最值存在性问题(原卷版).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、玩转压轴题,争取满分之备战2020年中考数学解答题高端精品专题四 几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的
2、连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1)三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2)两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P解决线段和差的最值问题,
3、有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。【典例指引】类型一 【确定线段(或线段的和,差)的最值或确定点的坐标】 【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E(I)证明:EO=
4、EB;()点P是直线OB上的任意一点,且OPC是等腰三角形,求满足条件的点P的坐标;()点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点 B(1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,PAD的面积最
5、大?并求最大值;(4)在(2)的条件下,是否存在点P,使PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】 【典例指引2】(2020·重庆初三期末)如图,抛物线()与双曲线相交于点、,已知点坐标,点在第三象限内,且的面积为3(为坐标原点).(1)求实数、的值;(2)在该抛物线的对称轴上是否存在点使得为等腰三角形?若存在请求出所有的点的坐标,若不存在请说明理由.(3)在坐标系内有一个点,恰使得,现要求在轴上找出点使得的周长最小,请求出的坐标和周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)
6、如图1,已知抛物线yx+3与x轴交于A和B两点,(点A在点B的左侧),与y轴交于点C(1)求出直线BC的解析式(2)M为线段BC上方抛物线上一动点,过M作x轴的垂线交BC于H,过M作MQBC于Q,求出MHQ周长最大值并求出此时M的坐标;当MHQ的周长最大时在对称轴上找一点R,使|ARMR|最大,求出此时R的坐标(3)T为线段BC上一动点,将OCT沿边OT翻折得到OCT,是否存在点T使OCT与OBC的重叠部分为直角三角形,若存在请求出BT的长,若不存在,请说明理由类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】 【典例指引3】(2019·甘肃中考真题)如图,已知二次函数yx
7、2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线与轴交于),两点,与轴交于点,连接(1)求该抛物线的解析式,并写出它的对称轴;(2)点为抛物线对称轴上一点,连接,若,求点的坐标;(3)已知,若是抛物线上一个动点(其中),连接,求
8、面积的最大值及此时点的坐标(4)若点为抛物线对称轴上一点,抛物线上是否存在点,使得以为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由【新题训练】1如图,直线y5x5交x轴于点A,交y轴于点C,过A,C两点的二次函数yax24xc的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作NDx轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数yax24xc图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标2(2019
9、3;江苏中考真题)如图,已知等边ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把ABC沿直线l折叠,点B的对应点是点B.(1)如图1,当PB=4时,若点B恰好在AC边上,则AB的长度为_;(2)如图2,当PB=5时,若直线l/AC,则BB的长度为 ;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,ACB的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求ACB面积的最大值.3(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB4,BC6若不改变矩形ABC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备考2022数学专题04几何最值存在性问题(原卷版)
限制150内