《人教版必修一数学学问点.docx》由会员分享,可在线阅读,更多相关《人教版必修一数学学问点.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版必修一数学学问点 数学不是看会的,而是练会的,由于数学公式不多,但是要把公式都学会却不太简单,所以大家要勤加练习。下面是我整理的人教版必修一数学学问点,仅供参考盼望能够关心到大家。 人教版必修一数学学问点 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性, (2)元素的互异性, (3)元素的无序性, 3.集合的表示:如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 u留意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N_或N+
2、整数集Z有理数集Q实数集R 1)列举法:a,b,c 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。xR|x-32,x|x-32 3)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集 留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系:A=B(55,且55,则5=5) 实例:设A=x|x2
3、-1=0B=-1,1“元素相同则两集合相等” 即:任何一个集合是它本身的子集。AA 真子集:假如AB,且AB那就说集合A是集合B的真子集,记作AB(或BA) 假如AB,BC,那么AC 假如AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 u有n个元素的集合,含有2n个子集,2n-1个真子集 三、集合的运算 运算类型交集并集补集 定义由全部属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB=x|xA,且xB. 由全部属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并
4、B),即AB=x|xA,或xB). 设S是一个集合,A是S的一个子集,由S中全部不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 例题: 1.下列四组对象,能构成集合的是() A某班全部高个子的同学B的艺术家C一切很大的书D倒数等于它自身的实数 2.集合a,b,c的真子集共有个 3.若集合M=y|y=x2-2x+1,xR,N=x|x0,则M与N的关系是. 4.设集合A=,B=,若AB,则的取值范围是 5.50名同学做的物理、化学两种试验,已知物理试验做得正确得有40人,化学试验做得正确得有31人, 两种试验都做错得有4人,则这两种试验都做对的有人。 6.用描述法表示图中阴影部分的点(含
5、边界上的点)组成的集合M=. 7.已知集合A=x|x2+2x-8=0,B=x|x2-5x+6=0,C=x|x2-mx+m2-19=0,若BC,AC=,求m的值 二、函数的有关概念 1.函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域. 留意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义
6、域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必需大于零; (4)指数、对数式的底必需大于零且不等于1. (5)假如函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不行以等于零, (7)实际问题中的函数的定义域还要保证明际问题有意义. 相同函数的推断方法:表达式相同(与表示自变量和函数值的字母无关);定义域全都(两点必需同时具备) (见课本21页相关例2) 2.值域:先考虑其定义域 (1)观看法 (2)配方法 (3)代换法 3.函数图象学问归纳 (1)定义:在平
7、面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. (2)画法 A、描点法: B、图象变换法 常用变换方法有三种 1)平移变换 2)伸缩变换 3)对称变换 4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 5.映射 一般地,设A、B是两个非空的集合,假如按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作f:AB 6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值状况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 假如y=f(u)(uM),u= 人教版必修一数学学问点
限制150内