《八班级上册北师大版数学学问点汇合2022.docx》由会员分享,可在线阅读,更多相关《八班级上册北师大版数学学问点汇合2022.docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八班级上册北师大版数学学问点汇合2022 学习没有比一步一个脚印更困难的了。虽然步伐很陡,但只有一步一步地去实现学习的抱负。下面是我为大家整理的有关八班级上册数学学问点,盼望对你们有关心! 八班级上册数学学问点 三角形 1全等三角形的对应边、对应角相等 2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 5边边边公理(SSS)有三边对应相等的两个三角形全等 6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 7定理1在角的平分线上
2、的点到这个角的两边的距离相等 8定理2到一个角的两边的距离相同的点,在这个角的平分线上 9角的平分线是到角的两边距离相等的全部点的集合 10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 21推论1等腰三角形顶角的平分线平分底边并且垂直于底边 22等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合 23推论3等边三角形的各角都相等,并且每一个角都等于60 24等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 25推论1三个角都相等的三角形是等边三角形 26推论2有一个角等于60的等腰三角形是等边三角形 27在直角三角形中,假如一个锐角
3、等于30那么它所对的直角边等于斜边的一半 28直角三角形斜边上的中线等于斜边上的一半 29定理线段垂直平分线上的点和这条线段两个端点的距离相等 30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 一次函数 (1)正比例函数:一般地,形如y=kx(k是常数,k0)的函数,叫做正比例函数,其中k叫做比例系数; (2)正比例函数图像特征:一些过原点的直线; (3)图像性质: 当k0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;当k0时,函数y=kx的图像经过其次、四象限,从左向右下降,即随着x的增大y反而减小; (4)求正比例函数的解析式:已知一个非原
4、点即可; (5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点) (6)一次函数:一般地,形如y=kx+b(k、b是常数,k0)的函数,叫做一次函数; (7)正比例函数是一种特别的一次函数;(由于当b=0时,y=kx+b即为y=kx) (8)一次函数图像特征:一些直线; (9)性质: y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b0,向上平移;当b0,向下平移) 当k0时,直线y=kx+b由左至右上升,即y随着x的增大而增大; 当k0时,直线y=kx+b由左至右下降,即y随着x的增大而减小; 当b0时,直线y=kx+b与y轴正半
5、轴有交点为(0,b); 当b0时,直线y=kx+b与y轴负半轴有交点为(0,b); (10)求一次函数的解析式:即要求k与b的值; (11)画一次函数的图像:已知两点; 用函数观点看方程(组)与不等式 (1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值; (2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围; (3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线; (4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解
6、方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标; 四边形的相关概念 1、四边形 在同一平面内,由不在同始终线上的四条线段首尾顺次相接组成的图形叫做四边形。 2、四边形具有不稳定性 3、四边形的内角和定理及外角和定理 四边形的内角和定理:四边形的内角和等于360。 四边形的外角和定理:四边形的外角和等于360。 推论:多边形的内角和定理:n边形的内角和等于(n-2)180; 多边形的外角和定理:任意多边形的外角和等于360。 6、设多边形的边数为n,则多边形的对角线共有n(n-3)条。从n边形的一个顶点出2 发能引(n
7、-3)条对角线,将n边形分成(n-2)个三角形。 平行四边形 1、平行四边形的定义 两组对边分别平行的四边形叫做平行四边形。 2、平行四边形的性质 (1)平行四边形的对边平行且相等。 (2)平行四边形相邻的角互补,对角相等 (3)平行四边形的对角线相互平分。 (4)平行四边形是中心对称图形,对称中心是对角线的交点。 常用点:(1)若始终线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段 的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。 (2)推论:夹在两条平行线间的平行线段相等。 3、平行四边形的判定 (1)定义:两组对边分别平行的四边形是平行四边形 (2)定理1:两组对
8、角分别相等的四边形是平行四边形 (3)定理2:两组对边分别相等的四边形是平行四边形 (4)定理3:对角线相互平分的四边形是平行四边形 (5)定理4:一组对边平行且相等的四边形是平行四边形 4、两条平行线的距离 两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离到处相等。 5、平行四边形的面积 S平行四边形=底边长高=ah 初二上册数学学问点 (一)运用公式法 我们知道整式乘法与因式分解互为逆变形。假如把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 假如
9、把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项假如有公因式应先提公因式,再进一步分解。 2.因式分解,必需进行到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 这就是说,两个数的平
10、方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 项数:三项 有两项是两个数的的平方和,这两项的符号相同。 有一项是这两个数的积的两倍。 (3)当多项式中有公因式时,应当先提出公因式,再用公式分解。 (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 (5)分解因式,必需分解到每一个多项式因式都不能再分解为止。 (五)分组分解法 我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用
11、提取公因式法,再看它又不能用公式法分解因式. 假如我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式. 原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) 做到这一步不叫把多项式分解因式,由于它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能连续分解,所以 原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) =(m+n)(a+b). 学好数学的关键就在于要适时适量地进行总结归类,接下来我就为大家整理了这篇人教版八班级数学全等三角形学问点讲解,盼望可以对大家有所关心。 全等三角形的性质:全等三角形对应边相
12、等、对应角相等。 全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。 角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等 角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。 证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),、回顾三角形判定,搞清我们还需要什么,、正确地书写证明格式(挨次和对应关系从已知推导出要证明的问题)
13、. 人教版八班级数学全等三角形学问点讲解就为大家介绍到这里了,盼望大家都能养成擅长总结的好习惯。 这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,假如把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式. (六)提公因式法 1.在运用提取公因式法把一个多项式因式分解时,首先观看多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设帮助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或转变符号,直到可确定多项式的
14、公因式. 2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要留意: 1)必需先将常数项分解成两个因数的积,且这两个因数的代数和等于 一次项的系数. 2)将常数项分解成满意要求的两个因数积的多次尝试,一般步骤: 列出常数项分解成两个因数的积各种可能状况; 尝试其中的哪两个因数的和恰好等于一次项系数. 3)将原多项式分解成(x+q)(x+p)的形式. (七)分式的乘除法 1.把一个分式的分子与分母的公因式约去,叫做分式的约分. 2.分式进行约分的目的是要把这个分式化为最简分式. 3.假如分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公
15、因式.假如分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分. 4.分式约分中留意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3. 5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简洁的分式之分子分母可直接乘方. 6.留意混合运算中应先算括号,再算乘方,然后乘除,最终算加减. (八)分数的加减法 1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,
16、从而把各分式的分母统一起来. 2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变. 3.一般地,通分结果中,分母不绽开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作预备. 4.通分的依据:分式的基本性质. 5.通分的关键:确定几个分式的公分母. 通常取各分母的全部因式的次幂的积作公分母,这样的公分母叫做最简公分母. 6.类比分数的通分得到分式的通分: 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。 同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的
17、运算转化为整式运算。 8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 9.同分母分式相加减,分母不变,只须将分子作加减运算,但留意每个分子是个整体,要适时添上括号. 10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分. 11.异分母分式的加减运算,首先观看每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化. 12.作为最终结果,假如是分式则应当是最简分式. (九)含有字母系数的一元一次方程 含有字母系数的一元一次方程 引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,依据题意,可得方程ax=b(a0) 在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。 含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必需特殊留意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。 八班级上册北师大版数学学问点汇合2022
限制150内