专题05实数(1)-备考2022年全国中考数学真题分项汇编(第02期全国通用)(解析版).doc
《专题05实数(1)-备考2022年全国中考数学真题分项汇编(第02期全国通用)(解析版).doc》由会员分享,可在线阅读,更多相关《专题05实数(1)-备考2022年全国中考数学真题分项汇编(第02期全国通用)(解析版).doc(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题05实数(1)(全国一年)学校:_姓名:_班级:_考号:_一、单选题1(2020·湖北荆门中考真题)的平方是( )ABCD2【答案】D【解析】【分析】先计算,然后再计算平方【详解】故选:D【点睛】本题考查了绝对值和平方的计算,按照顺序进行计算即可2(2020·甘肃天水中考真题)下列四个实数中,是负数的是()ABCD【答案】D【解析】【分析】根据负数的定义逐项判断即得答案【详解】解:A、,3不是负数,故本选项不符合题意;B、,4不是负数,故本选项不符合题意;C、,4不是负数,故本选项不符合题意;D、是负数,故本选项符合题意故选:D【点睛】本题考查了负数的定义以及实数的基本
2、知识,属于基础题型,熟练掌握基本知识是解题关键3(2020·江苏常州中考真题)8的立方根是( )A2B±2C±2D2【答案】D【解析】【分析】【详解】解:根据立方根的定义,由23=8,可得8的立方根是2故选:D【点睛】本题考查立方根4(2020·内蒙古中考真题)下列命题正确的是( )A若分式的值为0,则x的值为±2B一个正数的算术平方根一定比这个数小C若,则D若,则一元二次方程有实数根【答案】D【解析】【分析】A选项:当x=2时,分式无意义;B选项:1的算数平方根还是1;C选项:可以让b=2,a=1,代入式子中即可做出判断;根据根的判别式可得到
3、结论【详解】A选项:当x=2时,分式无意义,故A选项错误;B选项:1的算数平方根还是1,不符合“一个正数的算术平方根一定比这个数小”,故B选项错误;C选项:可以假设b=2,a=1,满足,代入式子中,通过计算发现与结论不符,故C选项错误;D选项:,当时,一元二次方程有实数根,故D选项正确故本题选择D【点睛】本题主要考查分式值为0时的条件、算数平方根、不等式的性质及一元二次方程根的判别式问题,掌握分式的意义、算数平方根、不等式的性质及一元二次方程根的判别式的知识是解答本题的关键5(2020·湖北荆州中考真题)若x为实数,在的“”中添上一种运算符号(在,×,÷中选择)后
4、,其运算的结果是有理数,则x不可能的是( )ABCD【答案】C【解析】【分析】根据题意填上运算符计算即可【详解】A.,结果为有理数;B. ,结果为有理数;C.无论填上任何运算符结果都不为有理数;D.,结果为有理数;故选C【点睛】本题考查实数的运算,关键在于牢记运算法则6(2020·山东东营中考真题)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为( )ABCD【答案】B【解析】【分析】根据算术平方根的求解方法进行计算即可得解【详解】的算术平方根,故选:B【点睛】本题主要考查了算术平方根的求解方法,考生需要将其与平方根进行对比掌握7(2020·广西中考真题)下
5、列实数是无理数的是( )ABCD【答案】A【解析】【分析】根据无理数的三种形式求解即可【详解】解:1,0,-5是有理数,是无理数故选:A【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数8(2020·黑龙江大庆中考真题)1,0,这四个数中,最大的数是( )A1B0CD【答案】C【解析】【分析】利用正数大于 大于负数,从而可得答案【详解】解:由正数大于 大于负数, 所以:最大的数是 故选【点睛】本题考查的是实数的大小比较,掌握实数的大小比较方法是解题的关键9(2020·浙江中考真题)4的算术平方根是( )A-2B2C
6、±2D2【答案】B【解析】试题分析:因22=4,根据算术平方根的定义即可得4的算术平方根是2故答案选B考点:算术平方根的定义10(2020·天津中考真题)估计的值在( )A3和4之间B4和5之间C5和6之间D6和7之间【答案】B【解析】【分析】因为,所以在4到5之间,由此可得出答案.【详解】解:,故选:B【点睛】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题11(2020·湖北恩施中考真题)在实数范围内定义运算“”:,例如:如果,则的值是( )AB1C0D2【答案】C【解析】【分析】根据题目中给出的新定义运算规则进行运算即可求解【详解】解:
7、由题意知:,又,故选:C【点睛】本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解即可12(2020·湖北省直辖县级单位中考真题)下列运算正确的是( )ABCD【答案】D【解析】【分析】根据算术平方根,负整数指数幂,幂的乘方和合并同类项的运算法则进行判断即可【详解】A、,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,故本选项正确;故选:D【点睛】本题考查了算术平方根,负整数指数幂,幂的乘方和合并同类项的运算法则,掌握运算法则是解题关键13(2020·湖北荆州中考真题)定义新运算,对于任意实数a,b满足,其中等式右边
8、是通常的加法、减法、乘法运算,例如,若(k为实数) 是关于x的方程,则它的根的情况是( )A有一个实根B有两个不相等的实数根C有两个相等的实数根D没有实数根【答案】B【解析】【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,可得,即可得出答案.【详解】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.【点睛】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号.14(2020·湖南益阳中考真题)四个实数,中,
9、最大的是( )ABCD【答案】C【解析】【分析】根据实数的大小比较法则比较即可【详解】解:四个实数,中,最大的是;故选C【点睛】本题考查了对实数的大小比较法则的应用,能熟记法则内容是解题的关键,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小15(2020·四川雅安中考真题)已知,则的值是( )A4B6C8D10【答案】D【解析】【分析】直接利用绝对值和二次根式的性质分别化简得出答案【详解】解:,a-2=0,b-2a=0,解得:a=2,b=4,故a+2b=10故选:D【点睛】此题主要考查了非负数的性质,正确得出a,b的值是解题关键16(2020
10、·甘肃金昌中考真题)下列实数是无理数的是( )A-2BCD【答案】D【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可【详解】解:-2是负整数,是分数,=3是整数,都是有理数.开方开不尽,是无理数.故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数17(2020·甘肃金昌中考真题)若一个正方形的面积是12,则它的边长是( )AB3CD4【答案】A【解析】【分析】根据正方形的面积公式即可求解【详解】解:由题意知:正方形的面积等于边长×边长,设边长为a,
11、故a²=12,a=±,又边长大于0边长a=故选:A.【点睛】本题考查了正方形的面积公式,开平方运算等,属于基础题18(2020·山东烟台中考真题)利用如图所示的计算器进行计算,按键操作不正确的是( )A按键即可进入统计计算状态B计算的值,按键顺序为:C计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果D计算器显示结果为时,若按键,则结果切换为小数格式0.333333333【答案】B【解析】【分析】根据计算器的按键写出计算的式子然后求值【详解】解:A、按键即可进入统计计算状态是正确的,故选项A不符合题意;B、计算的值,按键顺序为:,故选项B符合题意;
12、C、计算结果以“度”为单位,按键可显示以“度”“分”“秒”为单位的结果是正确的,故选项C不符合题意;D、计算器显示结果为时,若按键,则结果切换为小数格式0333333333是正确的,故选项D不符合题意;故选:B【点睛】本题考查了科学计算器,熟练了解按键的含义是解题的关键19(2020·四川凉山中考真题)下列等式成立的是( )ABCD【答案】C【解析】【分析】根据二次根式、绝对值、负指数幂及特殊角的三角函数值即可求解【详解】A.,故错误; B. ,故错误;C.,正确; D.,无意义;故选C【点睛】此题主要考查实数的运算,解题的关键是熟知二次根式、绝对值、负指数幂及特殊角的三角函数值20
13、(2020·内蒙古鄂尔多斯中考真题)实数的绝对值是( )ABCD【答案】A【解析】【分析】直接利用绝对值的性质分析得出答案【详解】解:实数的绝对值是:故选:A【点睛】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键21(2020·内蒙古赤峰中考真题)实数,-3,0,中,最小的数是( )AB-3C0D【答案】B【解析】【分析】去掉A、D选项中的绝对值和根式符号,再将四个选项的实数进行对比,即可求出答案【详解】解:A选项:|-5|=5,D 选项:=2,-3025,-30|-5|,其中的最小值为-3,故选:B【点睛】根据实数的大小比较法则,可得:负数0正数,两负数相比,绝对值
14、大的反而小,两正数相比,绝对值大的大22(2020·山东烟台中考真题)4的平方根是()A±2B2C2D【答案】A【解析】【详解】4的平方根是±2.选A.点睛:辨析平方根与算术平方根,开平方与平方23(2020·江苏南京中考真题)3的平方根是( )A9BCD【答案】D【解析】【分析】直接根据平方根的概念即可求解【详解】3的平方根是故选:D【点睛】本题主要考查了平方根的概念,解决本题的关键是熟记平方根的定义24(2020·湖南湘西中考真题)下列运算正确的是( )ABCD【答案】D【解析】【分析】根据算术平方根的性质,完全平方公式,合并同类二次根式法
15、则,积的乘方的运算法则依次判断即可得到答案.【详解】A、,故该选项错误;B、,故该选项错误;C、中两个二次根式不是同类二次根式,不能合并,故该选项错误;D、,故该选项正确;故选:D.【点睛】此题考查算术平方根的性质,完全平方公式,合并同类二次根式法则,积的乘方的运算法则,熟练掌握各知识点是解题的关键.25(2020·山东潍坊中考真题)若定义一种新运算:例如:;则函数的图象大致是( )ABCD【答案】A【解析】【分析】根据,可得当时,分两种情况当时和当时,分别求出一次函数的关系式,然后判断即可【详解】解:当时,当时,即:,当时,即:,当时,函数图像向上,随的增大而增大,综上所述,A选项
16、符合题意,故选:A【点睛】本题考查了一次函数的图象,能在新定义下,求出函数关系式是解题的关键26(2020·湖南长沙中考真题)2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“(Day)”国际数学日之所以定在3月14日,是因为314与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:圆周率是一个有理数;圆周率是一个无理数;圆周率是一个与圆的大小无关的常数,它等于该圆的
17、周长与直径的比;圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是( )ABCD【答案】A【解析】【分析】圆周率的含义:圆的周长和它直径的比值,叫做圆周率,用字母表示,是一个无限不循环小数;据此进行分析解答即可【详解】解:圆周率是一个有理数,错误; 是一个无限不循环小数,因此圆周率是一个无理数,说法正确;圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,说法正确;圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比,说法错误;故选:A【点睛】本题考查了对圆周率的理解,解题的关键是明确其意义,并知道圆周率一个无限不循环小数,3.14只是取它的近似值27(2
18、020·黑龙江穆棱朝鲜族学校中考真题)若是二元一次方程组的解,则x2y的算术平方根为( )A3B3,3CD,【答案】C【解析】【分析】将代入二元一次方程组中解出x和y的值,再计算x2y的算术平方根即可【详解】解:将代入二元一次方程中,得到:,解这个关于x和y的二元一次方程组,两式相加,解得,将回代方程中,解得,x2y的算术平方根为,故选:C【点睛】本题考查了二元一次方程组的解法,算术平方根的概念等,熟练掌握二元一次方程组的解法是解决本题的关键28(2020·江苏宿迁中考真题)在ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A2B4C5D6【答案】A【解析】
19、【分析】根据三角形三边关系,两边之差小于第三边,两边之和大于第三边,可以得到AC的长度可以取得的数值的取值范围,从而可以解答本题【详解】在ABC中,AB=1,BC=,1AC+1,12+1,4+1,5+1,6+1,AC的长度可以是2,故选项A正确,选项B、C、D不正确;故选:A【点睛】本题考查了三角形三边关系以及无理数的估算,解答本题的关键是明确题意,利用三角形三边关系解答29(2020·内蒙古赤峰中考真题)估计的值应在 ( )A4和5之间B5和6之间C6和7之间D7和8之间【答案】A【解析】【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】=2+,4<6&
20、lt;6.25,2<<2.5,4<2+<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.二、填空题30(2020·青海中考真题)(-3+8)的相反数是_;的平方根是_【答案】 【解析】【分析】第1空:先计算-3+8的值,根据相反数的定义写出其相反数;第2空:先计算的值,再写出其平方根【详解】第1空:,则其相反数为:第2空:,则其平方根为:故答案为:,【点睛】本题考查了相反数,平方根,熟知相反数,平方根的知识是解题的关键31(2020·重庆中考真题)计算: =_【答案】3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 05 实数 备考 2022 全国 中考 数学 真题分项 汇编 02 通用 解析
限制150内