初二上册数学学问点人教版总结.docx
《初二上册数学学问点人教版总结.docx》由会员分享,可在线阅读,更多相关《初二上册数学学问点人教版总结.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初二上册数学学问点人教版总结 学习数学要学会单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注意学问的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。下面是我为大家整理的有关初二上册数学学问点总结归纳,盼望对你们有关心! 初二上册数学学问点总结归纳1 第十一章全等三角形 一.学问框架 二.学问概念 1.全等三角形:两个三角形的外形、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。 2.全等三角形的性质:全等三角形的对应角相等、对应边相等。 3.三角形全等的判定公理及推论有: (1)“边角边”简称“SAS
2、” (2)“角边角”简称“ASA” (3)“边边边”简称“SSS” (4)“角角边”简称“AAS” (5)斜边和直角边相等的两直角三角形(HL)。 4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。 5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),、回顾三角形判定,搞清我们还需要什么,、正确地书写证明格式(挨次和对应关系从已知推导出要证明的问题). 在学习三角形的全等时,老师应当从实际生活中的图形动身,引出全等图形进而引出全等三角形。通过直观的理解和比较发
3、觉全等三角形的奥妙之处。在经受三角形的角平分线、中线等探究中激发同学的集合思维,启发他们的灵感,使同学体会到集合的真正魅力。 第十二章轴对称 一.学问框架 二.学问概念 1.对称轴:假如一个图形沿某条直线折叠后,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。 2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 (2)角平分线上的点到角两边距离相等。 (3)线段垂直平分线上的任意一点到线段两个端点的距离相等。 (4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 (5)轴对称图形上对应线段相等、对应角相等。 3.等腰三角形的性质:
4、等腰三角形的两个底角相等,(等边对等角) 4.等腰三角形的顶角平分线、底边上的高、底边上的中线相互重合,简称为“三线合一”。 5.等腰三角形的判定:等角对等边。 6.等边三角形角的特点:三个内角相等,等于60, 7.等边三角形的判定:三个角都相等的三角形是等腰三角形。 有一个角是60的等腰三角形是等边三角形 有两个角是60的三角形是等边三角形。 8.直角三角形中,30角所对的直角边等于斜边的一半。 9.直角三角形斜边上的中线等于斜边的一半。 本章内容要求同学在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经受数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来
5、解决一些数学问题。 第.章实数 一.学问框架 二.学问概念 1.算术平方根:一般地,假如一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a0时,a才有算术平方根。 2.平方根:一般地,假如一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。 3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。 4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。 5.数a的相反数是-a,一个正实数的肯定值是它本身,一个负数的肯定值是它的相反数,0的肯定值是0 实数部分主要要求同学了解无理数
6、和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。 第十四章一次函数 一.学问框架 二.学问概念 1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特殊地,当b=0时,称y是x的正比例函数。 2.正比例函数一般式:y=kx(k0),其图象是经过原点(0,0)的一条直线。 3.正比例函数y=kx(k0)的图象是一条经过原点的直线,当k0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,直线y=k
7、x经过其次、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k0时,y随x的增大而增大;当k0时,y随x的增大而减小。 4.已知两点坐标求函数解析式:待定系数法 一次函数是学校同学学习函数的开头,也是今后学习其它函数学问的基石。在学习本章内容时,老师应当多从实际问题动身,引出变量,从详细到抽象的熟悉事物。培育同学良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的有用价值和乐趣。 第十五章整式的乘除与分解因式 一.学问概念 1.同底数幂的乘法法则:(m,n都是正数) 2.幂的乘方法则:(m,n都是正数) 3.整式的乘法
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 上册 数学 学问 点人教版 总结
限制150内