专题28二次函数(2)-备考2022年全国中考数学真题分项汇编(第02期全国通用)(解析版).doc
《专题28二次函数(2)-备考2022年全国中考数学真题分项汇编(第02期全国通用)(解析版).doc》由会员分享,可在线阅读,更多相关《专题28二次函数(2)-备考2022年全国中考数学真题分项汇编(第02期全国通用)(解析版).doc(229页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题28二次函数(2)(全国一年)学校:_姓名:_班级:_考号:_一、填空题1(2020·辽宁朝阳?中考真题)抛物线与x轴有交点,则k的取值范围是_【答案】且【解析】【分析】直接利用根的判别式进行计算,再结合,即可得到答案【详解】解:抛物线与x轴有交点,又,k的取值范围是且;故答案为:且【点睛】本题考查了二次函数与坐标轴有交点的问题,解题的关键是掌握根的判别式求参数的取值范围2(2020·山东烟台?中考真题)二次函数yax2+bx+c的图象如图所示,下列结论:ab0;a+b10;a1;关于x的一元二次方程ax2+bx+c0的一个根为1,另一个根为其中正确结论的序号是_【答案
2、】【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x1时二次函数的值的情况进行推理,进而对所得结论进行判断【详解】解:由二次函数的图象开口向上可得a0,对称轴在y轴的右侧,b0,ab0,故错误;由图象可知抛物线与x轴的交点为(1,0),与y轴的交点为(0,1),c1,a+b10,故正确;a+b10,a1b,b0,a10,a1,故正确;抛物线与y轴的交点为(0,1),抛物线为yax2+bx1,抛物线与x轴的交点为(1,0),ax2+bx10的一个根为1,根据根与系数的关系,另一个根为,故正确;故答案为【点评】主要考查图象与二次函
3、数系数之间的关系,二次函数与方程之间的转换会利用特殊值代入法求得特殊的式子,如:ya+b+c,然后根据图象判断其值3(2020·黑龙江大庆?中考真题)已知关于的一元二次方程,有下列结论:当时,方程有两个不相等的实根;当时,方程不可能有两个异号的实根;当时,方程的两个实根不可能都小于1;当时,方程的两个实根一个大于3,另一个小于3以上4个结论中,正确的个数为_【答案】【解析】【分析】由根的判别式,根与系数的关系进行判断,即可得到答案【详解】解:根据题意,一元二次方程,;当,即时,方程有两个不相等的实根;故正确;当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故错误
4、;抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故正确;由,则,解得:或;故正确;正确的结论有;故答案为:【点睛】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题4(2020·山东淄博?中考真题)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个在整个行程中,快递货车装载的货包数量最多是_个【答案】210【解析】【分析】【详解】根据理解题意找出题目中所给的等量关系,找出规律,
5、写出货包数量的函数解析式,再根据二次函数最值的求法求出快递货车装载的货包数量最多的站【解答】解:当一辆快递货车停靠在第x个服务驿站时,快递货车上需要卸下已经通过的(x1)个服务驿站发给该站的货包共(x1)个,还要装上下面行程中要停靠的(nx)个服务驿站的货包共(nx)个根据题意,完成下表:服务驿站序号在第x服务驿站启程时快递货车货包总数1n12(n1)1+(n2)2(n2)32(n2)2+(n3)3(n3)43(n3)3+(n4)4(n4)54(n4)4+(n5)5(n5)n0由上表可得yx(nx)当n29时,yx(29x)x2+29x(x14.5)2+210.25,当x14或15时,y取得最
6、大值210答:在整个行程中,快递货车装载的货包数量最多是210个故答案为:210【点评】本题考查了规律型:数字的变化类,二次函数的性质在实际生活中的应用,二次函数的最值在x时取得5(2020·四川雅安?中考真题)从中任取一数作为,使抛物线的开口向上的概率为_【答案】【解析】【分析】使抛物线y=ax2+bx+c的开口向上的条件是a0,据此从所列5个数中找到符合此条件的结果,再利用概率公式求解可得【详解】解:在所列的5个数中任取一个数有5种等可能结果,其中使抛物线y=ax2+bx+c的开口向上的有3种结果,使抛物线y=ax2+bx+c的开口向上的概率为,故答案为:.【点睛】本题考查概率公
7、式的计算,根据题意正确列出概率公式是解题的关键6(2020·吉林长春?中考真题)如图,在平面直角坐标系中,点的坐标为,点的坐标为若抛物线(、为常数)与线段交于、两点,且,则的值为_【答案】【解析】【分析】根据题意,可以得到点的坐标和的值,然后将点的坐标代入抛物线的解析式,即可得到的值,本题得以解决【详解】解:点的坐标为,点的坐标为,抛物线、为常数)与线段交于、两点,且,设点的坐标为,则点的坐标为,抛物线,解得,【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答7(2020·山东威海?中考真题)下表中与的数据满足我们初
8、中学过的某种函数关系,其函数表达式为_【答案】【解析】【分析】根据表中x与y之间的数据,假设函数关系式为:,并将表中的点(-1,0)、(0,3)、(1,4)、(3,0)任取三个点带入函数关系式,求出二次项系数、一次项系数、常数项即可求得答案【详解】解:根据表中x与y之间的数据,假设函数关系式为:,并将表中(-1,0)、(0,3)、(1,4)三个点带入函数关系式,得:解得:,函数的表达式为:故答案为:【点睛】本题考查了函数的表达式,解题的关键是掌握函数的三种表达方式:列表法、解析式法、图像法,本题就是将列表法转变为解析式法8(2020·湖北荆州?中考真题)我们约定:为函数的关联数,当其
9、图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”,若关联数为的函数图象与x轴有两个整交点(m为正整数),则这个函数图象上整交点的坐标为_【答案】或或【解析】【分析】将关联数为代入函数得到:,由题意将y=0和x=0代入即可【详解】解:将关联数为代入函数得到:,关联数为的函数图象与x轴有两个整交点(m为正整数),y=0,即,因式分解得,又关联数为的函数图象与x轴有两个整交点,即 m=1,与x轴交点即y=0解得x=1或x=2,即坐标为或,与y轴交点即x=0解得y=2,即坐标为,这个函数图象上整交点的坐标为或或;故答案为:或或【点睛】此题考查二次函数相关知识,涉及一元二次方程判别式判断解的个
10、数的关系及二次函数与坐标轴交点的求解办法,难度一般,计算较多9(2020·宁夏中考真题)若二次函数的图象与x轴有两个交点,则k的取值范围是_【答案】【解析】【分析】根据二次函数的图象与x轴有两个交点,可知判别式0,列出不等式并解之即可求出k的取值范围【详解】二次函数的图象与x轴有两个交点,=0,解得:,故答案为:【点睛】本题考查二次函数的判别式、解一元一次不等式,熟记二次函数的图象与判别式的三种对应关系并熟练运用是解答的关键10(2020·广东广州?中考真题)对某条线段的长度进行了3次测量,得到3个结果(单位:)9.9,10.1,10.0,若用作为这条线段长度的近以值,当_
11、时,最小对另一条线段的长度进行了次测量,得到个结果(单位:),若用作为这条线段长度的近似值,当_时,最小【答案】10.0; 【解析】【分析】(1)把整理得:,设,利用二次函数性质求出当时有最小值;(2)把整理得:, 设,利用二次函数的性质即可求出当 取最小值时的值【详解】解:(1)整理得:,设,由二次函数的性质可知:当时,函数有最小值,即:当时,的值最小,故答案为:10.0;(2)整理得:,设,由二次函数性质可知:当时,有最小值,即:当时,的值最小,故答案为:【点睛】本题考查了二次函数模型的应用,关键是设,整理成二次函数,利用二次函数的性质何时取最小值来解决即可11(2020·内蒙古
12、中考真题)在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_【答案】4【解析】【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值【详解】A、B的纵坐标一样,A、B是对称的两点,对称轴,即,b=4抛物线顶点(2,3)满足题意n得最小值为4,故答案为4【点睛】本题考查二次函数对称轴的性质及顶点式的变形,关键在于根据对称轴的性质从题意中判断出对称轴12(2020·黑龙江穆棱?朝鲜族学校中考真题)将抛物线y=(x1)25关于y轴对称,再向右平
13、移3个单位长度后顶点的坐标是_【答案】(2,5)【解析】【分析】先求出抛物线的顶点坐标,再根据题意进行变换即可求解【详解】抛物线y=(x1)25的顶点为(1,-5),关于y轴对称的坐标为(-1,-5),再向右平移3个单位长度后的坐标为(2,-5),故答案为:(2,5) 【点睛】此题主要考查抛物线顶点,解题的关键是熟知二次函数顶点式的特点13(2020·湖北省直辖县级单位?中考真题)某商店销售一批头盔,售价为每顶80元,每月可售出200顶在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔
14、的售价为_元【答案】70【解析】【分析】设降价x元,利润为W,根据题意得出方程,然后求出取最大值时的x值即可得到售价【详解】解:设降价x元,利润为W,由题意得:W=(80-50-x)(200+20x),整理得:W=-20x2+400x+6000=-20(x-10)2+8000,当x=10时,可获得最大利润,此时每顶头盔的售价为:80-10=70(元),故答案为:70【点睛】本题考查了二次函数的实际应用,根据题意列出式子是解题关键14(2020·四川内江?中考真题)已知抛物线(如图)和直线我们规定:当x取任意一个值时,x对应的函数值分别为和若,取和中较大者为M;若,记当时,M的最大值为
15、4;当时,使的x的取值范围是;当时,使的x的值是,;当时,M随x的增大而增大上述结论正确的是_(填写所有正确结论的序号)【答案】【解析】【分析】根据题目中的较大者M的定义逐个分析即可【详解】解:对于:当时,显然只要,则M的值为,故错误;对于:当时,在同一直角坐标系内画出的图像,如下图所示,其中红色部分即表示M,联立的函数表达式,即,求得交点横坐标为和,观察图形可知的x的取值范围是,故正确;对于:当时,在同一直角坐标系内画出的图像,如下图所示,其中红色部分即表示M,联立的函数表达式,即,求得其交点的横坐标为和,故M=3时分类讨论:当时,解得或,当时,解得(舍),故正确;对于:当时,函数,此时图像
16、一直在图像上方,如下图所示,故此时M=,故M随x的增大而增大,故正确故答案为:【点睛】本题考查了二次函数与一次函数的图像性质及交点坐标,本题的关键是要能理解M的含义,学会用数形结合的方法分析问题15(2020·上海中考真题)如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是_【答案】y=x2+3【解析】【分析】直接根据抛物线向上平移的规律求解【详解】抛物线y=x2向上平移3个单位得到y=x2+3故答案为:y=x2+3【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移
17、后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式16(2020·江苏淮安?中考真题)二次函数的图像的顶点坐标是_【答案】(-1,4)【解析】【分析】把二次函数解析式配方转化为顶点式解析式,即可得到顶点坐标【详解】解:=-(x+1)2+4,顶点坐标为(-1,4)故答案为(-1,4)【点睛】本题考查了二次函数的性质,把解析式配方写成顶点式解析式是解题的关键17(2020·湖北荆门?中考真题)如图,抛物线与x轴交于点A、B,顶点为C,对称轴为直线,给出下列结论:;若点C的坐标为,则的面积可以等于2;是抛物线上两点,若,则;若抛物线经过点,则方程的两根
18、为,3其中正确结论的序号为_【答案】【解析】【分析】根据抛物线的开口方向,对称轴,顶点坐标来判断a,b,c的正负情况,即可根据图形可知AB的值大于4,利用三角形的面积求法,即可得面积会大于2利用图形的对称性,离对称轴越小,函数值越大把点代入抛物线,可求得x=3是方程的解,再利用图形的对称可求另一个解【详解】解: 开口向下, a<0, 对称轴x=1,a<0, b>0,抛物线与y轴的交点在y的正半轴上, c>0, abc<0,正确从图像可知,AB>4,>, ,故错误 ,从图像可知 到1的距离小于 到1的距离,从图像可知,越靠近对称轴,函数值越大; ,故错误
19、把点(3,-1)代入抛物线得 ,即 ,即x=3,是方程的解,根据抛物线的对称性,所以另一解为-1,故正确【点睛】本题主要考查了二次函数图像的性质,函数的对称性,函数的增减性以及二次函数与一元二次方程的关系,解题的关键要熟练掌握抛物线的性质,以及看图能力,本题也可以采用一些特殊值代入法来解18(2020·湖北咸宁?中考真题)如图,四边形是边长为2的正方形,点E是边上一动点(不与点B,C重合),且交正方形外角的平分线于点F,交于点G,连接,有下列结论:;的面积的最大值为1其中正确结论的序号是_(把正确结论的序号都填上)【答案】【解析】【分析】证明BAE=CEG,结合B=BCD可证明ABE
20、ECG,可判断;在BA上截取BM=BE,证明AMEECF,可判断;可得AEF为等腰直角三角形,证明BAE+DAF=45°,结合BAE=CEF,FCH=45°=CFE+CEF,可判断;设BE=x,则BM=x,AM=AB-BM=2-x,根据AMEECF,求出AME面积的最大值即可判断.【详解】解:四边形ABCD为正方形,B=BCD=90°,AEF=90°,AEB+CEG=90°,又AEB+BAE=90°,BAE=CEG,ABEECG,故正确;在BA上截取BM=BE,四边形ABCD为正方形,B=90°,BA=BC,BEM为等腰直角
21、三角形,BME=45°,AME=135°,BA-BM=BC-BE,AM=CE,CF为正方形外角平分线,DCF=45°,ECF=135°=AME,BAE=FEC, AMEECF(ASA),AE=EF,故正确;AEF为等腰直角三角形,EAF=EFA=45°,BAE+DAF=45°,而BAE=CEF,FCH=45°=CFE+CEF,故正确;设BE=x,则BM=x,AM=AB-BM=2-x,SAME=x(2-x)=,当x=1时,SAME有最大值,而AMEECF,SAME=SCEF,SCEF有最大值,所以错误;综上:正确结论的序号是:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 28 二次 函数 备考 2022 全国 中考 数学 真题分项 汇编 02 通用 解析
链接地址:https://www.taowenge.com/p-5149697.html
限制150内