2022高考数学学问点.docx
《2022高考数学学问点.docx》由会员分享,可在线阅读,更多相关《2022高考数学学问点.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022高考数学学问点 2022年高考就要到了,你整理好高考数学学问点了吗?想要了解更多的高考数学必考学问点吗?下面是我为大家整理的关于2022高考数学学问点 ,盼望对您有所关心。欢迎大家阅读参考学习! 高三班级数学必考学问点 正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高). 正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形. 特别棱锥的顶点在底面的射影位置: 棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. 棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边
2、形的外心. 棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. 棱锥的顶点究竟面各边距离相等,则顶点在底面上的射影为底面多边形内心. 三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心. 三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心. 每个四周体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; 每个四周体都有内切球,球心 是四周体各个二面角的平分面的交点,到各面的距离等于半径. 注:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.()(各个侧面的等腰三角形不知是否全等) ii.若一个三角锥,两条对角线相互垂直,则第三对角
3、线必定垂直. 简证:ABCD,ACBD BCAD.令得,已知则. iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形肯定是矩形. iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是肯定是正方形. 简证:取AC中点,则平面90易知EF个等可能基本领件,那么大事A发生的概率为。 古典概型解题步骤: (1)阅读题目,搜集信息; (2)推断是否是等可能大事,并用字母表示大事; (3)求出基本领件总数n和大事A所包含的结果数m; (4)用公式求出概率并下结论。 求古典概型的概率的关键: 求古典概型的概率的关键是如何确定基本领件总数及大事A包含的基本领件的个数。 高三数学学问
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 学问
限制150内