2022高考数学必备学问点及公式总结.docx
《2022高考数学必备学问点及公式总结.docx》由会员分享,可在线阅读,更多相关《2022高考数学必备学问点及公式总结.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022高考数学必备学问点及公式总结 在高中数学的学习中,有许多需要我们记忆背诵的数学公式以及定理,这些都是我们在学习数学上的一些基础学问,我们肯定要把相关的数学公式以及定理背下来,这样也便利我们解答高中数学题。下面是我为大家整理的有关高考数学必备学问点及公式总结,盼望对你们有关心! 高考数学必备学问点及公式总结 1高中数学必备学问点 1.对于集合,肯定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? 注意借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 3.留意下列性质: (3)德摩根定律: 4.你会用补集思想解决问题吗?(排解法、
2、间接法) 的取值范围。 6.命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7.对映射的概念了解吗?映射f:AB,是否留意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 8.函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9.求函数的定义域有哪些常见类型? 10.如何求复合函数的定义域? 义域是_。 11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12.反函数存在的条件是什么? (一一对应函数) 求反函
3、数的步骤把握了吗? (反解x;互换x、y;注明定义域) 13.反函数的性质有哪些? 互为反函数的图象关于直线y=x对称; 保存了原来函数的单调性、奇函数性; 14.如何用定义证明函数的单调性? (取值、作差、判正负) 如何推断复合函数的单调性? ) 15.如何利用导数推断函数的单调性? 值是() A.0B.1C.2D.3 a的最大值为3) 16.函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 留意如下结论: (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。 17.你熟识周期函数的定义吗? 函数,T是
4、一个周期。) 如: 18.你把握常用的图象变换了吗? 留意如下“翻折”变换: 19.你娴熟把握常用函数的图象和性质了吗? 的双曲线。 应用:“三个二次”(二次函数、二次方程、二次不等式)的关系二次方程 求闭区间m,n上的最值。 求区间定(动),对称轴动(定)的最值问题。 一元二次方程根的分布问题。 由图象记性质!(留意底数的限定!) 利用它的单调性求最值与利用均值不等式求最值的区分是什么? 20.你在基本运算上常出现错误吗? 21.如何解抽象函数问题? (赋值法、结构变换法) 22.把握求函数值域的常用方法了吗? (二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法
5、,导数法等。) 如求下列函数的最值: 23.你记得弧度的定义吗?能写出圆心角为,半径为R的弧长公式和扇形面积公式吗? 24.熟记三角函数的定义,单位圆中三角函数线的定义 25.你能快速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗? (x,y)作图象。 27.在三角函数中求一个角时要留意两个方面先求出某一个三角函数值,再判定角的范围。 28.在解含有正、余弦函数的问题时,你留意(到)运用函数的有界性了吗? 29.娴熟把握三角函数图象变换了吗? (平移变换、伸缩变换) 平移公式: 图象? 30.娴熟把握同角三角函数关系和诱导公式了吗? “奇”、“偶”指k取奇、偶数。 A
6、.正值或负值B.负值C.非负值D.正值 31.娴熟把握两角和、差、倍、降幂公式及其逆向应用了吗? 理解公式之间的联系: 应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。) 详细方法: (2)名的变换:化弦或化切 (3)次数的变换:升、降幂公式 (4)形的变换:统一函数形式,留意运用代数运算。 32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形? (应用:已知两边一夹角求第三边;已知三边求角。) 33.用反三角函数表示角时要留意角的范围。 34.不等式的性质有哪些? 答案:C 35.利用均值不等式: 值?(一正、
7、二定、三相等) 留意如下结论: 36.不等式证明的基本方法都把握了吗? (比较法、分析法、综合法、数学归纳法等) 并留意简洁放缩法的应用。 (移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。) 38.用“穿轴法”解高次不等式“奇穿,偶切”,从最大根的右上方开头 39.解含有参数的不等式要留意对字母参数的争论 40.对含有两个肯定值的不等式如何去解? (找零点,分段争论,去掉肯定值符号,最终取各段的并集。) 证明: (按不等号方向放缩) 42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“”问题) 43.等差数列的定义与性质 0的二次函数) 项,即: 44.等比数列
8、的定义与性质 46.你熟识求数列通项公式的常用方法吗? 例如:(1)求差(商)法 解: 练习 (2)叠乘法 解: (3)等差型递推公式 练习 (4)等比型递推公式 练习 (5)倒数法 47.你熟识求数列前n项和的常用方法吗? 例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 解: 练习 (2)错位相减法: (3)倒序相加法:把数列的各项挨次倒写,再与原来挨次的数列相加。 练习 48.你知道储蓄、贷款问题吗? 零存整取储蓄(单利)本利和计算模型: 若每期存入本金p元,每期利率为r,n期后,本利和为: 若按复利,如贷款问题按揭贷款的每期还款计算模型(按揭贷款分期等额归
9、还本息的借款种类) 若贷款(向银行借款)p元,采纳分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。假如每期利率为r(按复利),那么每期应还x元,满意 p贷款数,r利率,n还款期数 49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。 (2)排列:从n个不同元素中,任取m(mn)个元素,根据肯定的挨次排成一 (3)组合:从n个不同元素中任取m(mn)个元素并组成一组,叫做从n个不 50.解排列与组合问题的规律是: 相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采纳隔板法,数量不大时可以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高考 数学 必备 学问 公式 总结
限制150内