《数学必修三第一章算法学问点.docx》由会员分享,可在线阅读,更多相关《数学必修三第一章算法学问点.docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学必修三第一章算法学问点 学习数学课堂练习是最直接的反馈,肯定要仔细对待。不要急于完成作业,要先看看课堂笔记,回顾学习内容,加深记忆与理解。下面是我整理的数学必修三第一章算法学问点,仅供参考盼望能够关心到大家。 数学必修三第一章算法学问点 (1)算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必需是明确和有效的,而且能够在有限步之内完成. (2)算法的特点: 有限性:一个算法的步骤序列是有限的,必需在有限操作之后停止,不能是无限的. 确定性:算法中的每一步应当是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可. 挨次性与正确
2、性:算法从初始步骤开头,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都精确无误,才能完成问题. 不性:求解某一个问题的解法不肯定是的,对于一个问题可以有不同的算法. 普遍性:许多详细的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决。 结构 (1)挨次结构:挨次结构是最简洁的算法结构,语句与语句之间,框与框之间是按从上到下的挨次进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。 挨次结构在程序框图中的体现就是用流程线将程序框自上而下地连接
3、起来,按挨次执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所 指定的操作。 (2)条件结构:条件结构是指在算法中通过对条件的推断依据条件是否成立而选择不同流向的 算法结构。 条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不行能同时执行 A框和B框,也不行能A框、B框都不执行。一个推断结构可以有多个推断框。 (3)循环结构:在一些算法中,常常会出现从某处开头,根据肯定条件,反复执行某一处理步骤的状况,这就是循环结构,反复执行的处理步骤为循环体,明显,循环结构中肯定包含条件结构。循环结构又称重复结构,循环结构可细
4、分为两类: 一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再推断条件P是否成立,假如仍旧成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。 另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后推断给定的条件P是否成立,假如P仍旧不成立,则连续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。 留意:1循环结构要在某个条件下终止循环,这就需要条件结构来推断。因此,循环结构中肯定包含条件结构,但不允许“死循环”。 2在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环
5、次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次。 数学线段的性质 (1)线段公理:全部连接两点的线中,线段最短。也可简洁说成:两点之间线段最短。 (2)连接两点的线段的长度,叫做这两点的距离。 (3)线段的中点到两端点的距离相等。 (4)线段的大小关系和它们的长度的大小关系是全都的。 高中数学向量学问点 1.向量运算的几何形式和坐标形式,请留意:向量运算中向量起点、终点及其坐标的特征. 2.几个概念:零向量、单位向量(与 共线的单位向量是,平行(共线)向量(无传递性,是由于有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是). 3.两非零向量平行(共线)的充要条件 4.平面对量的基本定理:假如e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1+ e2. 5.三点共线; 6.向量的数量积: 数学必修三第一章学问点
限制150内