平面向量专题复习知识-0梳理(12页).doc
《平面向量专题复习知识-0梳理(12页).doc》由会员分享,可在线阅读,更多相关《平面向量专题复习知识-0梳理(12页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、-平面向量专题复习知识-0梳理-第 11 页高中复习知识梳理之八平面向量一、重点知识(一)基本概念:向量的有关概念有:向量、自由向量、有向线段、位置向量、零向量、相等向量、相反向量、平行向量(共线向量)、数乘向量;基线、单位向量、基向量、基底、正交基底: ;向量在轴上的正射影、向量在轴方向上的数量: ;向量的模(或向量的长度): ;(二)向量的基本运算:1. 向量的线性运算:加法、减法及数乘向量的综合运算: (1)向量求和的三角形法则: ; (2)向量求和的平行四边形法则: ; (3)向量求和的多边形法则: ; (4)向量减法法则: ;结论 在中(加)或(减)称为向量三角形;推广可有,称为封闭
2、折线(5)数乘向量的定义:实数和向量的乘积是一个向量,记作 ;其长为 ;其方向为: ;数乘向量的几何意义是: ;向量加法满足下列运算律:(1)加法交换律: ;(2)加法结合律: ;数乘向量满足下列运算律:(1) (2) (3) 。如:在平行四边形ABCD中,已知,试用表示 .如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,则的值为2. 向量共线的条件:结论2 (平行向量基本定理)向量与平行(即共线)的充要条件是存在唯一实数使特别地,三点共线3. 轴上向量的坐标及其运算:已知轴,取单位向量,对于轴上任意向量总是存在唯一实数x使得,我们称x为向量在轴上的坐标(或数量)。设是轴的一个
3、基向量,向量的坐标为AB,则;若轴为x轴,可设点A、B的坐标分别为x1,x2,则向量的坐标AB=。4. 向量的分解:结论3(平面向量基本定理) 设是平面上两个不共线向量(称为一组基底),则对平面上任一向量,存在唯一实数使这里 称为向量关于基底 的分解式。特别地若,则有称为定比分点向量式,也称为直线AB的向量参数方程式;称为中点向量式(为中点)上述结论提供了证明诸线共点与诸点共线的方法,如:证明三角形的三条中线交于一点,且这点把三条中线都分成的两条线段。求证三条高相交于一点5.平面向量的坐标运算:对于结论3,若是一组单位正交基底,则称是向量在基底下的坐标,记作。(在平面直角坐标系下)用坐标表示下
4、列结论:设,则有:6.向量的数量积:结论4 两个向量的数量积为,其中为两个向量的夹角,其范围为 数量积有如下性质: ;是点到直线(甚至到平面)距离公式推导的根据; 夹角公式 ;(坐标形式) 即 (用于求模); ;(坐标形式) (某些不等式放缩证明的根据)数量积的运算律:(1)交换律: ;(2)数乘律: ;(3)分配律: 。(请给出证明)注意:不满足消去律:推不出结论,举例: 。如:已知平面上直线l的方向向量=(-),点O(0,0)和点A(1, -2)在l上的射影分别为和,且,其中=( )A B- C 2 D-2模公式的应用举例:(1)求证: ,其几何意义是 。(2)若,则 (3)已知,则与的夹
5、角为 (4)已知中每两个向量夹角都为且,求值.7. 直线的方向向量 ,法向量 ,若再已知定点,而且点,是单位法向量,则点P到直线的距离公式为: 。(向量形式)8. 结论: ,称为向量三角形不等式(三)三角形的“四心”与向量1. 关于重心G,有重心公式:坐标,并有性质;2. 关于垂心H,有性质;3. 关于外心O,有性质;结论:O、H、G三点共线且;此线称为欧拉()线。(如何证明?)4. 关于内心I,经常涉及内角平分线的研究,如。 如: 已知O,N,P在所在平面内,且,且,则点O,N,P依次是的 (A)重心 外心 垂心 (B)重心 外心 内心 (C)外心 重心 垂心 (D)外心 重心 内心在四边形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 专题 复习 知识 梳理 12
限制150内