数学九班级上册圆的学问点.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数学九班级上册圆的学问点.docx》由会员分享,可在线阅读,更多相关《数学九班级上册圆的学问点.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学九班级上册圆的学问点 数学赐予人们的不仅是学问,更重要的是力量,这种力量包括观看试验、收集信息、归纳类比、直觉推断、规律推理、建立模型和精确计算。这些力量和培育,将使人终身受益。下面是我整理的数学九班级上册圆的学问点,仅供参考盼望能够关心到大家。 数学九班级上册圆的学问点 1.点与圆的位置关系及其数量特征:假如圆的半径为r,点到圆心的距离为d,则 点在圆上=d=r;点在圆内=ddr. 二.圆的对称性: 1.与圆相关的概念: 同心圆:圆心相同,半径不等的两个圆叫做同心圆。 等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。 等弧:在同圆或等圆中,能够相互重合的弧叫做等弧。 圆心角:
2、顶点在圆心的角叫做圆心角. 弦心距:从圆心到弦的距离叫做弦心距. 2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有很多条对称轴。 3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 说明:依据垂径定理与推论可知对于一个圆和一条直线来说,假如具备: 过圆心;垂直于弦;平分弦;平分弦所对的优弧;平分弦所对的劣弧。 上述五个条件中的任何两个条件都可推出其他三个结论。 4.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。 推论:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 班级 上册 学问
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内