2013届高三数学二轮复习 必考问题专项突破4 导数的简单应用及定积分 理.doc
《2013届高三数学二轮复习 必考问题专项突破4 导数的简单应用及定积分 理.doc》由会员分享,可在线阅读,更多相关《2013届高三数学二轮复习 必考问题专项突破4 导数的简单应用及定积分 理.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考必考问题4导数的简单应用及定积分1(2011全国)曲线ye2x1在点(0,2)处的切线与直线y0和yx围成的三角形的面积为()A. B. C. D1答案: Ay2e2x,曲线在点(0,2)处的切线斜率k2,切线方程为y2x2,该直线与直线y0和yx围成的三角形如图所示,其中直线y2x2与yx的交点A,所以三角形面积S1,故选A.2(2012广东)曲线yx3x3在点(1,3)处的切线方程为_解析曲线方程为yx3x3,则y3x21,又易知点(1,3)在曲线上,有y|x12,即在点(1,3)处的切线方程的斜率为2,所以切线方程为y32(x1),即2xy10.答案2xy103(2012陕西)设函数f
2、(x)D是由x轴和曲线yf(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则zx2y在D上的最大值为_解析当x0时,求导得f(x),所以曲线在点(1,0)处的切线的斜率k1,切线方程为yx1,画图可知区域D为三角形,三个顶点的坐标分别为,(0,1),(1,0),平移直线x2y0,可知在点(0,1)处z取得最大值2.答案24(2012江西)计算定积分1(x2sin x)dx_.解析1(x2sin x)dx.答案1利用导数的几何意义求曲线的切线方程;考查定积分的性质及几何意义2考查利用导数的有关知识研究函数的单调性、极值和最值,进而解(证)不等式3用导数解决日常生活中的一些实际问题,以及与其
3、他知识相结合,考查常见的数学思想方法首先要理解导数的工具性作用;其次要弄清函数单调性与导数符号之间的关系,掌握求函数极值、最值的方法步骤,对于已知函数单调性或单调区间,求参数的取值范围问题,一般先利用导数将其转化为不等式在某个区间上的恒成立问题,再利用分离参数法求解.必备知识导数的几何意义(1)函数yf(x)在xx0处的导数f(x0)就是曲线yf(x)在点(x0,f(x0)处的切线的斜率,即kf(x0)(2)曲线yf(x)在点(x0,f(x0)处的切线方程为yf(x0)f(x0)(xx0)(3)导数的物理意义:s(t)v(t),v(t)a(t)基本初等函数的导数公式和运算法则(1)基本初等函数
4、的导数公式原函数导函数f(x)cf(x)0f(x)xn(nR)f(x)nxn1f(x)sin xf(x)cos xf(x)cos xf(x)sin xf(x)ax(a0且a1)f(x)axln af(x)exf(x)exf(x)logax(a0且a1)f(x)f(x)ln xf(x)(2)导数的四则运算法则u(x)v(x)u(x)v(x);u(x)v(x)u(x)v(x)u(x)v(x);(v(x)0)(3)复合函数求导复合函数yf(g(x)的导数和yf(u),ug(x)的导数之间的关系为yxf(u)g(x)利用导数研究函数单调性的一般步骤(1)确定函数的定义域;(2)求导数f(x);(3)若
5、求单调区间(或证明单调性),只需在函数yf(x)的定义域内解(或证明)不等式f(x)0或f(x)0;若已知yf(x)的单调性,则转化为不等式f(x)0或f(x)0在单调区间上恒成立问题求解求可导函数极值的步骤(1)求f(x);(2)求f(x)0的根;(3)判定根两侧导数的符号;(4)下结论求函数f(x)在区间a,b上的最大值与最小值的步骤(1)求f(x);(2)求f(x)0的根(注意取舍);(3)求出各极值及区间端点处的函数值;(4)比较其大小,得结论(最大的就是最大值,最小的就是最小值)必备方法1利用导数解决优化问题的步骤(1)审题设未知数;(2)结合题意列出函数关系式;(3)确定函数的定义
6、域;(4)在定义域内求极值、最值;(5)下结论2定积分在几何中的应用被积函数为yf(x),由曲线yf(x)与直线xa,xb(ab)和y0所围成的曲边梯形的面积为S.(1)当f(x)0时,S f(x)dx;(2)当f(x)0时,S f(x)dx;(3)当xa,c时,f(x)0;当xc,b时,f(x)0,则S f(x)dx f(x)dx.常考查:根据曲线方程,求其在某点处的切线方程;根据曲线的切线方程求曲线方程中的某一参数可能出现在导数解答题的第一问,较基础【例1】 (2011新课标全国)已知函数f(x),曲线yf(x)在点(1,f(1)处的切线方程为x2y30,求a、b的值审题视点 听课记录审题
7、视点 求f(x),由可求解f(x),由于直线x2y30的斜率为,且过点(1,1),故即解得a1,b1. 函数切线的相关问题的解决,抓住两个关键点:其一,切点是交点;其二,在切点处的导数是切线的斜率因此,解决此类问题,一般要设出切点,建立关系方程(组)其三,求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上;在点P处的切线,点P是切点【突破训练1】 直线y2xb是曲线yln x(x0)的一条切线,则实数b_.解析切线的斜率是2,根据导数的几何意义可以求出切点的横坐标,进而求出切点的坐标,切点在切线上,代入即可求出b的值y,令2得
8、,x,故切点为,代入直线方程,得ln 2b,所以bln 21.答案ln 21常考查:利用导数研究含参函数的单调性问题;由函数的单调性求参数的范围尤其是含参函数单调性的研究成为高考命题的热点,主要考查学生的分类讨论思想,试题有一定难度【例2】 (2012合肥一模)已知函数f(x)x(aR),g(x)ln x求函数F(x)f(x)g(x)的单调区间审题视点 听课记录审题视点 确定定义域求导对a进行分类讨论确定f(x)的单调性下结论解函数F(x)f(x)g(x)xln x的定义域为(0,)所以f(x)1.当14a0,即a时,得x2xa0,则f(x)0.所以函数F(x)在(0,)上单调递增当14a0,
9、即a时,令f(x)0,得x2xa0,解得x10,x2.(1)若a0,则x20.因为x(0,),所以f(x)0,所以函数F(x)在(0,)上单调递增(2)若a0,则x时,f(x)0;x,时,f(x)0.所以函数F(x)在区间上单调递减,在区间上单调递增综上所述,当a0时,函数F(x)的单调递增区间为(0,);当a0时,函数F(x)的单调递减区间为,单调递增区间为. 讨论函数的单调性其实就是讨论不等式的解集的情况大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应
10、方程的判别式进行分类讨论讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制【突破训练2】 (2012安徽)设函数f(x)aexb(a0)(1)求f(x)在0,)内的最小值;(2)设曲线yf(x)在点(2,f(2)处的切线方程为yx,求a,b的值解(1)f(x)aex,当f(x)0,即xln a时,f(x)在(ln a,)上递增;当f(x)0,即xln a时,f(x)在(,ln a)上递减当0a1时,ln a0,f(x)在(0,ln a)上递减,在(ln a,)上递增,从而f(x)在0,)内的最小值为f(ln a)2b;当a1时,ln a0,f(x)在0,)上递增,从而f(x)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013届高三数学二轮复习 必考问题专项突破4 导数的简单应用及定积分 2013 届高三 数学 二轮 复习 必考 问题 专项 突破 导数 简单 应用 积分
限制150内