《《数值计算方法》试题集及答案教程文件.doc》由会员分享,可在线阅读,更多相关《《数值计算方法》试题集及答案教程文件.doc(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Good is good, but better carries it.精益求精,善益求善。数值计算方法试题集及答案-数值计算方法复习试题一、填空题:1、,则A的LU分解为。答案:2、已知,则用辛普生(辛卜生)公式计算求得,用三点式求得。答案:2.367,0.253、,则过这三点的二次插值多项式中的系数为,拉格朗日插值多项式为。答案:-1,4、近似值关于真值有(2)位有效数字;5、设可微,求方程的牛顿迭代格式是();答案6、对,差商(1),(0);7、计算方法主要研究(截断)误差和(舍入)误差;8、用二分法求非线性方程f(x)=0在区间(a,b)内的根时,二分n次后的误差限为();9、求解一阶
2、常微分方程初值问题=f(x,y),y(x0)=y0的改进的欧拉公式为();10、已知f(1)2,f(2)3,f(4)5.9,则二次Newton插值多项式中x2系数为(0.15);11、 两点式高斯型求积公式(),代数精度为(5);12、 解线性方程组Ax=b的高斯顺序消元法满足的充要条件为(A的各阶顺序主子式均不为零)。13、 为了使计算的乘除法次数尽量地少,应将该表达式改写为,为了减少舍入误差,应将表达式改写为。14、 用二分法求方程在区间0,1内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。15、 计算积分,取4位有效数字。用梯形公式计算求得的近似值为
3、0.4268,用辛卜生公式计算求得的近似值为0.4309,梯形公式的代数精度为1,辛卜生公式的代数精度为3。16、 求解方程组的高斯塞德尔迭代格式为,该迭代格式的迭代矩阵的谱半径=。17、 设,则,的二次牛顿插值多项式为。18、 求积公式的代数精度以(高斯型)求积公式为最高,具有()次代数精度。19、 已知f(1)=1,f(3)=5,f(5)=-3,用辛普生求积公式求(12)。20、 设f(1)=1,f(2)=2,f(3)=0,用三点式求(2.5)。21、如果用二分法求方程在区间内的根精确到三位小数,需对分(10)次。22、已知是三次样条函数,则=(3),=(3),=(1)。23、是以整数点为
4、节点的Lagrange插值基函数,则(1),(),当时()。24、解初值问题的改进欧拉法是2阶方法。25、区间上的三次样条插值函数在上具有直到_2_阶的连续导数。26、改变函数()的形式,使计算结果较精确。27、若用二分法求方程在区间1,2内的根,要求精确到第3位小数,则需要对分10次。28、设是3次样条函数,则a=3,b=-3,c=1。29、若用复化梯形公式计算,要求误差不超过,利用余项公式估计,至少用477个求积节点。30、写出求解方程组的Gauss-Seidel迭代公式,迭代矩阵为,此迭代法是否收敛收敛。31、设,则9。32、设矩阵的,则。33、若,则差商3。34、数值积分公式的代数精度
5、为2。35、 线性方程组的最小二乘解为。36、设矩阵分解为,则。二、单项选择题:1、 Jacobi迭代法解方程组的必要条件是(C)。AA的各阶顺序主子式不为零BCD2、设,则为(C)A2B5C7D33、三点的高斯求积公式的代数精度为(B)。A2B5C3D44、求解线性方程组Ax=b的LU分解法中,A须满足的条件是(B)。A对称阵B正定矩阵C任意阵D各阶顺序主子式均不为零5、舍入误差是(A)产生的误差。A. 只取有限位数B模型准确值与用数值方法求得的准确值C观察与测量D数学模型准确值与实际值6、3.141580是的有(B)位有效数字的近似值。A6B5C4D77、用1+x近似表示ex所产生的误差是
6、(C)误差。A模型B观测C截断D舍入8、解线性方程组的主元素消去法中选择主元的目的是(A)。A控制舍入误差B减小方法误差C防止计算时溢出D简化计算9、用1+近似表示所产生的误差是(D)误差。A舍入B观测C模型D截断10、-3247500是舍入得到的近似值,它有(C)位有效数字。A5B6C7D811、设f(-1)=1,f(0)=3,f(2)=4,则抛物插值多项式中x2的系数为(A)。A05B05C2D-212、三点的高斯型求积公式的代数精度为(C)。A3B4C5D213、(D)的3位有效数字是0.236102。(A)0.0023549103(B)2354.82102(C)235.418(D)23
7、5.5410114、用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=j(x),则f(x)=0的根是(B)。(A)y=j(x)与x轴交点的横坐标(B)y=x与y=j(x)交点的横坐标(C)y=x与x轴的交点的横坐标(D)y=x与y=j(x)的交点15、用列主元消去法解线性方程组,第1次消元,选择主元为(A)。(A)4(B)3(C)4(D)916、拉格朗日插值多项式的余项是(B),牛顿插值多项式的余项是(C)。(A)f(x,x0,x1,x2,xn)(xx1)(xx2)(xxn1)(xxn),(B)(C)f(x,x0,x1,x2,xn)(xx0)(xx1)(xx2)(xxn1)(x
8、xn),(D)17、等距二点求导公式f(x1)(A)。18、用牛顿切线法解方程f(x)=0,选初始值x0满足(A),则它的解数列xnn=0,1,2,一定收敛到方程f(x)=0的根。19、为求方程x3x21=0在区间1.3,1.6内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是(A)。(A)(B)(C)(D)20、求解初值问题欧拉法的局部截断误差是();改进欧拉法的局部截断误差是();四阶龙格库塔法的局部截断误差是(A)(A)O(h2)(B)O(h3)(C)O(h4)(D)O(h5)21、解方程组的简单迭代格式收敛的充要条件是()。(1),(2),(3),(4)22、在
9、牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。(1),(2),(3),(4),23、有下列数表x00.511.522.5f(x)-2-1.75-10.2524.25所确定的插值多项式的次数是()。(1)二次;(2)三次;(3)四次;(4)五次24、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。(1),(2),(3),(4)25、取计算,下列方法中哪种最好?()(A);(B);(C);(D)。26、已知是三次样条函数,则的值为()(A)6,6;(B)6,8;(C)8,6;(D)8,8。27、由
10、下列数表进行Newton插值,所确定的插值多项式的最高次数是()1.52.53.5-10.52.55.08.011.5(A);(B);(C);(D)。28、形如的高斯(Gauss)型求积公式的代数精度为()(A);(B);(C);(D)。29、计算的Newton迭代格式为()(A);(B);(C);(D)。30、用二分法求方程在区间内的实根,要求误差限为,则对分次数至少为()(A)10;(B)12;(C)8;(D)9。31、经典的四阶龙格库塔公式的局部截断误差为()(A);(B);(C);(D)。32、设是以为节点的Lagrange插值基函数,则()(A);(B);(C);(D)。33、5个节
11、点的牛顿-柯特斯求积公式,至少具有()次代数精度(A)5;(B)4;(C)6;(D)3。34、已知是三次样条函数,则的值为()(A)6,6;(B)6,8;(C)8,6;(D)8,8。35、已知方程在附近有根,下列迭代格式中在不收敛的是()(A);(B);(C);(D)。36、由下列数据012341243-5确定的唯一插值多项式的次数为()(A)4;(B)2;(C)1;(D)3。37、5个节点的Gauss型求积公式的最高代数精度为()(A)8;(B)9;(C)10;(D)11。三、是非题(认为正确的在后面的括弧中打,否则打)1、 已知观察值,用最小二乘法求n次拟合多项式时,的次数n可以任意取。(
12、)2、 用1-近似表示cosx产生舍入误差。()3、 表示在节点x1的二次(拉格朗日)插值基函数。()4、牛顿插值多项式的优点是在计算时,高一级的插值多项式可利用前一次插值的结果。()5、矩阵A=具有严格对角占优。()四、计算题:1、 用高斯-塞德尔方法解方程组,取,迭代四次(要求按五位有效数字计算)。答案:迭代格式k000012.75003.81252.537520.209383.17893.680530.240432.59973.183940.504202.48203.70192、 求A、B使求积公式的代数精度尽量高,并求其代数精度;利用此公式求(保留四位小数)。答案:是精确成立,即得求积
13、公式为3、 当时,公式显然精确成立;当时,左=,右=。所以代数精度为3。已知13452654分别用拉格朗日插值法和牛顿插值法求的三次插值多项式,并求的近似值(保留四位小数)。答案:差商表为一阶均差二阶均差三阶均差1236245-1-154-104、取步长,用预估-校正法解常微分方程初值问题答案:解:即n01234500.20.40.60.81.011.825.879610.713719.422435.02795、已知-2-101242135求的二次拟合曲线,并求的近似值。答案:解:0-244-816-8161-121-11-22201000003131113342548161020015100
14、34341正规方程组为6、已知区间0.4,0.8的函数表0.40.50.60.70.80.389420.479430.564640.644220.71736如用二次插值求的近似值,如何选择节点才能使误差最小?并求该近似值。答案:解:应选三个节点,使误差尽量小,即应使尽量小,最靠近插值点的三个节点满足上述要求。即取节点最好,实际计算结果,且7、构造求解方程的根的迭代格式,讨论其收敛性,并将根求出来,。答案:解:令.且,故在(0,1)内有唯一实根.将方程变形为则当时,故迭代格式收敛。取,计算结果列表如下:n01230.50.0351278720.0964247850.089877325n45670
15、.0905959930.0905173400.0905259500.090525008且满足.所以.8利用矩阵的LU分解法解方程组。答案:解:令得,得.9对方程组(1) 试建立一种收敛的Seidel迭代公式,说明理由;(2) 取初值,利用(1)中建立的迭代公式求解,要求。解:调整方程组的位置,使系数矩阵严格对角占优故对应的高斯塞德尔迭代法收敛.迭代格式为取,经7步迭代可得:.10、已知下列实验数据xi1.361.952.16f(xi)16.84417.37818.435试按最小二乘原理求一次多项式拟合以上数据。解:当0x1时,ex,则,且有一位整数.要求近似值有5位有效数字,只须误差.由,只要
16、即可,解得所以,因此至少需将0,168等份。11、用列主元素消元法求解方程组。解:回代得。12、取节点,求函数在区间0,1上的二次插值多项式,并估计误差。解:又故截断误差。13、用欧拉方法求在点处的近似值。解:等价于()记,取,.则由欧拉公式,可得,14、给定方程1)分析该方程存在几个根;2)用迭代法求出这些根,精确到5位有效数字;3) 说明所用的迭代格式是收敛的。解:1)将方程(1)改写为(2)作函数,的图形(略)知(2)有唯一根。2)将方程(2)改写为构造迭代格式计算结果列表如下:k123456789xk1.223131.294311.274091.279691.278121.278561
17、.278441.278471.278463),当时,且所以迭代格式对任意均收敛。15、用牛顿(切线)法求的近似值。取x0=1.7,计算三次,保留五位小数。解:是的正根,牛顿迭代公式为,即取x0=1.7,列表如下:1231.732351.732051.7320516、已知f(-1)=2,f(1)=3,f(2)=-4,求拉格朗日插值多项式及f(1,5)的近似值,取五位小数。解:17、n=3,用复合梯形公式求的近似值(取四位小数),并求误差估计。解:,时,至少有两位有效数字。18、用Gauss-Seidel迭代法求解线性方程组=,取x(0)=(0,0,0)T,列表计算三次,保留三位小数。解:Gaus
18、s-Seidel迭代格式为:系数矩阵严格对角占优,故Gauss-Seidel迭代收敛.取x(0)=(0,0,0)T,列表计算如下:11.6670.889-2.19522.3980.867-2.38332.4610.359-2.52619、用预估校正法求解(0x1),h=0。2,取两位小数。解:预估校正公式为其中,h=0.2,代入上式得:123450.20.40.60.81.01.241.582.042.643.4220、(8分)用最小二乘法求形如的经验公式拟合以下数据:1925303819.032.349.073.3解:解方程组其中解得:所以,21、(15分)用的复化梯形公式(或复化Simps
19、on公式)计算时,试用余项估计其误差。用的复化梯形公式(或复化Simpson公式)计算出该积分的近似值。解:22、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。解:(1),故收敛;(2),故收敛;(3),故发散。选择(1):,23、(8分)已知方程组,其中,(1) 列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。(2) 求出Jacobi迭代矩阵的谱半径。解:Jacobi迭代法:Gauss-Seidel迭代法:,24、1、(15分)取步长
20、,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格库塔法求的值。解:改进的欧拉法:所以;经典的四阶龙格库塔法:,所以。25、数值积分公式形如试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。解:将分布代入公式得:构造Hermite插值多项式满足其中则有:,26、用二步法求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的解:所以主项:该方法是二阶的。27、(10分)已知数值积分公式为:,试确定积分公式中的参数,使其代数精确度尽量高,并指出其代数精确度的次数。解:显然精确成立;时,;时,;时,;时,;所以,其代数精确度为3。28
21、、(8分)已知求的迭代公式为:证明:对一切,且序列是单调递减的,从而迭代过程收敛。证明:故对一切。又所以,即序列是单调递减有下界,从而迭代过程收敛。29、(9分)数值求积公式是否为插值型求积公式?为什么?其代数精度是多少?解:是。因为在基点1、2处的插值多项式为。其代数精度为1。30、(6分)写出求方程在区间0,1的根的收敛的迭代公式,并证明其收敛性。(6分),n=0,1,2,对任意的初值,迭代公式都收敛。31、(12分)以100,121,144为插值节点,用插值法计算的近似值,并利用余项估计误差。用Newton插值方法:差分表:1001211441011120.04761900.043478
22、3-0.000094113610+0.0476190(115-100)-0.0000941136(115-100)(115-121)=10.722755532、(10分)用复化Simpson公式计算积分的近似值,要求误差限为。或利用余项:,33、(10分)用Gauss列主元消去法解方程组:3.00001.00005.000034.00000.00003.66670.333312.66670.00005.3333-2.33334.33333.00001.00005.000034.00000.00005.3333-2.33334.333300001.93759.687534、(8分)求方程组的最小
23、二乘解。,若用Householder变换,则:最小二乘解:(-1.33333,2.00000)T.35、(8分)已知常微分方程的初值问题:用改进的Euler方法计算的近似值,取步长。,36、(6分)构造代数精度最高的如下形式的求积公式,并求出其代数精度:取f(x)=1,x,令公式准确成立,得:,f(x)=x2时,公式左右=1/4;f(x)=x3时,公式左=1/5,公式右=5/24公式的代数精度=237、(15分)已知方程组,其中,(1)写出该方程组的Jacobi迭代法和Gauss-Seidel迭代法的分量形式;(2)判断(1)中两种方法的收敛性,如果均收敛,说明哪一种方法收敛更快;解:(1)J
24、acobi迭代法的分量形式Gauss-Seidel迭代法的分量形式(2)Jacobi迭代法的迭代矩阵为,Jacobi迭代法收敛Gauss-Seidel迭代法的迭代矩阵为,Gauss-Seidel迭代法发散38、(10分)对于一阶微分方程初值问题,取步长,分别用Euler预报校正法和经典的四阶龙格库塔法求的近似值。解:Euler预报校正法经典的四阶龙格库塔法()39、(10分)用二步法求解一阶常微分方程初值问题,问:如何选择参数的值,才使该方法的阶数尽可能地高?写出此时的局部截断误差主项,并说明该方法是几阶的。解:局部截断误差为因此有局部截断误差主项为,该方法是2阶的。40、(10分)已知下列函
25、数表:012313927(1)写出相应的三次Lagrange插值多项式;(2)作均差表,写出相应的三次Newton插值多项式,并计算的近似值。解:(1)(2)均差表:41、(10分)取步长,求解初值问题,分别用欧拉预报校正法和经典四阶龙格库塔法求的近似值。解:(1)欧拉预报-校正法:(2)经典四阶龙格-库塔法:42、(10分)取5个等距节点,分别用复化梯形公式和复化辛普生公式计算积分的近似值(保留4位小数)。解:5个点对应的函数值xi00.511.52f(xi)10.6666670.3333330.1818180.111111-(2分)(1)复化梯形公式(n=4,h=2/4=0.5):复化梯形公式(n=2,h=2/2=1):43、(10分)已知方程组,其中,(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式;(2)讨论上述两种迭代法的收敛性。解:(1)Jacobi迭代法:Jacobi迭代矩阵:收敛性不能确定(2)Gauss-Seidel迭代法:Gauss-Seidel迭代矩阵:该迭代法收敛44、(10分)求参数,使得计算初值问题的二步数值方法的阶数尽量高,并给出局部截断误差的主项。解:所以当,即时,局部截断误差为局部截断误差的主项为,该方法为二阶方法。-
限制150内