《八班级上册人教版数学其次章学问点归纳.docx》由会员分享,可在线阅读,更多相关《八班级上册人教版数学其次章学问点归纳.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八班级上册人教版数学其次章学问点归纳 数学课本中介绍了大量的数学专题学问,尤其是应用题部分,是全部班级全部竞赛考试中必考的重点学问。同学肯定要在各个应用题专题学习的初期打下良好的基础。下面是我为大家整理的有关八班级上册数学其次章学问点,盼望对你们有关心! 八班级上册数学其次章学问点1 一、实数的概念及分类 1、实数的分类 一是分类是:正数、负数、0; 另一种分类是:有理数、无理数 将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数 2、无理数:无限不循环小数叫做无理数。 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如等; (2)有特定意义的
2、数,如圆周率,或化简后含有的数,如+8等; (3)有特定结构的数,如0.1010010001等; (4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和肯定值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,假如a与b互为相反数,则有a+b=0,a=b,反之亦成立。 2、肯定值 在数轴上,一个数所对应的点与原点的距离,叫做该数的肯定值。(|a|0)。零的肯定值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a,则a0. 3、倒数 假如a与b互为倒数,则有ab=1,反之亦成
3、立。倒数等于本身的数是1和-1.零没有倒数。 4、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要留意上述规定的三要素缺一不行)。 解题时要真正把握数形结合的思想,理解实数与数轴的点是一一对应的,并能敏捷运用。 八班级上册数学其次章学问点2 一、定义 1、假如一个图形沿着一条直线折叠,直线两旁的部分能够相互重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们也说这个图形关于这条直线成轴对称。 2、把一个图形沿着某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。 3、经过线段中点并且垂直于
4、这条线段的直线,叫做这条线段的垂直平分线。假如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 4、有两边相等的三角形叫做等腰三角形。 5、三条边都相等的三角形叫做等边三角形。 二、重点 1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。 2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。 3、垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。 4、垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 5、如何做对称轴:假如两个图形成轴对称,
5、其对称轴就是任何一对对应点所连线段的垂直平分线。因此,我们只要找到一对再对应点,作出连接它们的线段的垂直平分线就可以得到这个图形的对称轴。同样,对于轴对称图形,只要找到任意一组对应点所连线段的垂直平分线,就得到此图形的对称轴。 6、轴对称图形的性质:对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。由个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的外形,大小完全相等。新图形上的每一点,都是原图形上的某一点关于直线的对称点。连接任意一对对应点的线段被对称轴垂直平分。 7、等腰三角形的性质:等腰三角形的两个底角相等等边对等角等腰三角形的顶角平分线,底边上的中线,底边
6、上的高相互重合三线合一等腰三角形是轴对称图形,底边上的中线(,底边上的高,顶角平分线)所在直线就是它的对称轴。 等腰三角形两腰上的高或中线相等。 等腰三角形两底角平分线相等。 等腰三角形底边上高的点到两腰的距离之和等于底角到一腰的距离。 等腰三角形顶角平分线,底边上的高,底边上的中线到两腰的距离相等。 8、等腰三角形的判定方法:假如一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边。 假如三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。 9、等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60。 10、等边三角形的判定:等边三角形的三个内角都相等
7、,并且每一个角都等于60。三个角都相等的三角形是等边三角形。有一个角是60的等腰三角形是等边三角形。 11、直角三角形的性质之一:在直角三角形中,假如一个锐角等于30,那么它所对的直角边等于斜边的一半。 12、在一个三角形中,假如两条边不等,那么它们所对的角也不等,大边所对的角较大。 三、留意 1、(x,y)关于原点对称(-x。-y)。关于x轴对称(x,-y)。关于y轴对称(-x,y) 2、用坐标表示轴对称。 八班级上册数学其次章学问点3 1 全等三角形的对应边、对应角相等 2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 3 角边角公理( ASA)有两角和它们的夹边对应相等
8、的两个三角形全等 4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 5 边边边公理(SSS) 有三边对应相等的两个三角形全等 6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 7 定理1 在角的平分线上的点到这个角的两边的距离相等 8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 9 角的平分线是到角的两边距离相等的全部点的集合 10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 22 等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合 23 推论3
9、等边三角形的各角都相等,并且每一个角都等于60 24 等腰三角形的判定定理 假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 25 推论1 三个角都相等的三角形是等边三角形 26 推论 2 有一个角等于60的等腰三角形是等边三角形 27 在直角三角形中,假如一个锐角等于30那么它所对的直角边等于斜边的一半 28 直角三角形斜边上的中线等于斜边上的一半 29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 31 线段的垂直平分线可看作和线段两端点距离相等的全部点的集合 32 定理1 关于某条直线对
10、称的两个图形是全等形 33 定理 2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 34定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上 35逆定理 假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 37勾股定理的逆定理 假如三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形 38定理 四边形的内角和等于360 39四边形的外角和等于360 40多边形内角和定理 n边形的内角的和等于(n-2)180 41
11、推论 任意多边的外角和等于360 42平行四边形性质定理1 平行四边形的对角相等 43平行四边形性质定理2 平行四边形的对边相等 44推论 夹在两条平行线间的平行线段相等 45平行四边形性质定理3 平行四边形的对角线相互平分 46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 48平行四边形判定定理3 对角线相互平分的四边形是平行四边形 49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 50矩形性质定理1 矩形的四个角都是直角 51矩形性质定理2 矩形的对角线相等 52矩形判定定理1 有三个角是直角的四边形是矩形 53矩形判定定理2 对角线相等的平行四边形是矩形 54菱形性质定理1 菱形的四条边都相等 55菱形性质定理2 菱形的对角线相互垂直,并且每一条对角线平分一组对角 56菱形面积=对角线乘积的一半,即S=(ab)2 57菱形判定定理1 四边都相等的四边形是菱形 58菱形判定定理2 对角线相互垂直的平行四边形是菱形 59正方形性质定理1 正方形的四个角都是直角,四条边都相等 60正方形性质定理2正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角 61定理1 关于中心对称的两个图形是全等的 八班级上册人教版数学其次章学问点归纳
限制150内