华师大版八年级数学下册教案全集教学提纲.doc
《华师大版八年级数学下册教案全集教学提纲.doc》由会员分享,可在线阅读,更多相关《华师大版八年级数学下册教案全集教学提纲.doc(213页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Good is good, but better carries it.精益求精,善益求善。华师大版八年级数学下册教案全集-第17章分式一、概括:形如(A、B是整式,且B中含有字母,B0)的式子,叫做分式.其中A叫做分式的分子,B叫做分式的分母.整式和分式统称有理式,即有理式整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1);(2);(3);(4).例2 当取什么值时,下列分式有意义?(1);(2).四、练习:P5习题17.1第3题(1)(3)1判断下列各式哪些是整式,哪些是分式?9x+4,,2.当x取何值时,下列分式有意义?(1)(2)(3)3.当x为何值时,分式的值
2、为0?(1)(2)(3)17.1.2分式的基本性质1、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:(其中M是不等于零的整式)。与分数类似,根据分式的基本性质,可以对分式进行约分和通分.2、例3约分(1);(2)4、例4通分(1),;(2),;(3),17.2分式的运算17.2.1分式的乘除法一、复习与情境导入1、(1):什么叫做分式的约分?约分的根据是什么?(2):下列各式是否正确?为什么?2、尝试探究:计算:(1);(2).二、例题:例1计算:(1);(2).例2计算:.四、思考怎样进行分式的乘方呢?试计算:17.2.2分式的加减法一、实践
3、与探索1、回忆:同分母的分数的加减法法则:同分母的分数相加减,分母不变,把分子相加减。2、试一试:计算:(1);(2)3、总结一下怎样进行分式的加减法?概括同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减.二、例题1、例3计算:2、例4计算:.17.3可化为一元一次方程的分式方程(1)一、问题情境导入轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.二、例题:1、例1解方程:.2、例2解方程:.17.3可化为一元一次方程的分式方程(2)1、复习练习解下列方程:(1)(2)例3
4、某校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?17.4.1零指数幂与负整指数幂一、复习并问题导入问题1在13.1中介绍同底数幂的除法公式时,有一个附加条件:mn,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或mn时,情况怎样呢?这就是说:任何不等于零的数的零次幂都等于1.这就是说,任何不等于零的数的n(n为正整数)次幂,等于这个数的n次幂的倒数.四、例题:1、例1计算:(1)3-
5、2;(2)2、例2用小数表示下列各数:(1)10-4;(2)2.110-5.17.4.2科学记数法教学目标:1、使学生掌握不等于零的零次幂的意义。2、使学生掌握(a0,n是正整数)并会运用它进行计算。3、通过探索,让学生体会到从特殊到一般的方法是研究数学的一个重要方法。教学重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数。教学难点:理解和应用整数指数幂的性质。教学过程:一、复习并问题导入;=;=,=二、探索:科学记数法在2.12中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成a10n的形式,其中n是正整数,1
6、a10.例如,864000可以写成8.64105.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a10-n的形式,其中n是正整数,1a10.例如,上面例2(2)中的0.000021可以表示成2.110-5.例3 一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.分析在七年级上册第66页的阅读材料中,我们知道:1纳米米.由10-9可知,1纳米10-9米.所以35纳米3510-9米.而3510-9(3.510)10-935101(9)3.510-8,所以这个纳米粒子的直径为3.510-8米.第18章函数及其图象18、1变量与函数第一课时变量与
7、函数教学目标使学生会发现、提出函数的实例,并能分清实例中的常量和变量、自变量与函数,理解函数的定义,能应用方程思想列出实例中的等量关系。教学过程一、由下列问题导入新课问题l、右图(一)是某日的气温的变化图看图回答:1这天的6时、10时和14时的气温分别是多少?任意给出这天中的某一时刻,你能否说出这一时刻的气温是多少吗?2这一天中,最高气温是多少?最低气温是多少?3这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看出,随着时间t(时)的变化,相应的气温T()也随之变化。问题2一辆汽车以30千米时的速度行驶,行驶的路程为s千米,行驶的时间为t小时,那么,s与t具有什么关
8、系呢?问题3设圆柱的底面直径与高h相等,求圆柱体积V的底面半径R的关系问题4收音机上的刻度盘的波长和频率分别是用(m)和千赫兹(kHz)为单位标刻的下面是一些对应的数:波长l(m)30050060010001500频率f(kHz)1000600500300200同学们是否会从表格中找出波长l与频率f的关系呢?二、讲解新课1常量和变量在上述两个问题中有几个量?分别指出两个问题中的各个量?第1个问题中,有两个变量,一个是时间,另一个是温度,温度随着时间的变化而变化第2个问题中有路程s,时间t和速度v,这三个量中s和t可以取不同的数值是变量,而速度30千米/时,是保持不变的量是常量路程随着时间的变化
9、而变化。第3个问题中的体积V和R是变量,而是常量,体积随着底面半径的变化而变化第4个问题中的l与频率f是变量而它们的积等于300000,是常量常量:在某一变化过程中始终保持不变的量,称为常量变量:在某一变化过程中可以取不同数值的量叫做变量2函数的概念上面的各个问题中,都出现了两个变量,它们相互依赖,密切相关,例如:在上述的第1个问题中,一天内任意选择一个时刻,都有惟一的温度与之对应,t是自变量,T因变量(T是t的函数)在上述的2个问题中,s30t,给出变量t的一个值,就可以得到变量s惟一值与之对应,t是自变量,s因变量(s是t的函数)。在上述的第3个问题中,V2R2,给出变量R的一个值,就可以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 师大 八年 级数 下册 教案 全集 教学 提纲
限制150内