《小学六年级数学公式总结.doc》由会员分享,可在线阅读,更多相关《小学六年级数学公式总结.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小学六年级数学知识点总结1 每份数份数总数 总数每份数份数 总数份数每份数 2 、1倍数倍数几倍数 几倍数1倍数倍数 几倍数倍数1倍数 3、 速度时间路程 路程速度时间 路程时间速度 4 、单价数量总价 总价单价数量 总价数量单价 5、 工作效率工作时间工作总量 工作总量工作效率工作时间 工作总量工作时间工作效率 6、 加数加数和 和一个加数另一个加数 7 、被减数减数差 被减数差减数 差减数被减数 8、 因数因数积 积一个因数另一个因数 9、 被除数除数商 被除数商除数 商除数被除数 小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长边长4 C=4a 面积=边长边长 S=aa 2
2、 正方体 V:体积 a:棱长 表面积=棱长棱长6 S表=aa6 体积=棱长棱长棱长 V=aaa 3 长方形 C周长 S面积 a边长 周长=(长+宽)2 C=2(a+b) 面积=长宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长宽+长高+宽高)2 S=2(ab+ah+bh) (2)体积=长宽高 V=abh 5 三角形 s面积 a底 h高 面积=底高2 s=ah2 三角形高=面积 2底 三角形底=面积 2高 6 平行四边形 s面积 a底 h高 面积=底高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)高2 s=(a+b) h2 8 圆
3、形 S面积 C周长 d=直径 r=半径 (1)周长=直径=2半径 C=d=2r (2)面积=半径半径 S=rr9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长高 (2)表面积=侧面积+底面积2 (3)体积=底面积高 (4)体积侧面积2半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积高3 总数总份数平均数 和差问题的公式 (和差)2大数 (和差)2小数 和倍问题 和(倍数1)小数 小数倍数大数 (或者 和小数大数) 差倍问题 差(倍数1)小数 小数倍数大数 (或 小数差大数)小学奥数公式 和差问题的公式 (和差)2大数 (和
4、差)2小数 和倍问题的公式 和(倍数1)小数 小数倍数大数 (或者 和小数大数) 差倍问题的公式 差(倍数1)小数 小数倍数大数 (或 小数差大数) 植树问题的公式 1 非封闭线路上的植树问题主要可分为以下三种情形: 如果在非封闭线路的两端都要植树,那么: 株数段数1全长株距1 全长株距(株数1)株距全长(株数1) 如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数段数全长株距 全长株距株数 株距全长株数 如果在非封闭线路的两端都不要植树,那么: 株数段数1全长株距1 全长株距(株数1) 株距全长(株数1) 2 封闭线路上的植树问题的数量关系如下 株数段数全长株距 全长株距株数 株距全
5、长株数 盈亏问题的公式 (盈亏)两次分配量之差参加分配的份数 (大盈小盈)两次分配量之差参加分配的份数 (大亏小亏)两次分配量之差参加分配的份数 相遇问题的公式 相遇路程速度和相遇时间 相遇时间相遇路程速度和 速度和相遇路程相遇时间 追及问题的公式 追及距离速度差追及时间 追及时间追及距离速度差 速度差追及距离追及时间 流水问题 顺流速度静水速度水流速度 逆流速度静水速度水流速度 静水速度(顺流速度逆流速度)2 水流速度(顺流速度逆流速度)2 浓度问题的公式 溶质的重量溶剂的重量溶液的重量 溶质的重量浓度溶液的重量溶质的重量溶液的重量100%浓度 溶液的重量浓度溶质的重量 利润与折扣问题的公式
6、 利润售出价成本 涨跌金额本金涨跌百分比利润率利润成本100%(售出价成本1)100% 折扣实际售价原售价100%(折扣1) 利息本金利率时间 税后利息本金利率时间(120%) (一)数的读法和写法 1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。 2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 3、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。 4、小
7、数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。 5、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。 6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。 7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。 (二)数的改写 一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似
8、数。 1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 改写成以万做单位的数是 万;改写成 以亿做单位 的数 12.543 亿。 2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 省略亿后面的尾数是 13 亿。 3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 万后面的尾数约是 35 万。省略 亿后面的尾数约是 47 亿。 4. 大小比较1. 比较整数大小:
9、比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。 2. 比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大 3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。 (三)数的互化 1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。 2. 分数化成小数
10、:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。 3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。 5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。 (四)数的整除 1. 把
11、一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。 2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。 3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。 4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只
12、有1时,这两个合数互质。 (五) 约分和通分 1、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。 2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。 小数 1 、小数的意义 把整数1平均分成10份、100份、1000份 得到的十分之几、百分之几、千分之几 可以用小数表示。 一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。 在小数里,每相邻
13、两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 2、小数的分类 纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 3. 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:
14、 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 0.0333 12. 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 的循环节是“ 9 ” , 0.5454 的循环节是“ 54 ” 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 0.5656 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 0.03333 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节
15、只有一个数字,就只在它的上面点一个点。例如: 3.777 简写作 0. 简写作 。 (六)分数 1 分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。 把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2 分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 约分和通分 把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 (七)百分数表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用%来表示。百分号是表示百分数的符号。
限制150内