弹性力学答案(共13页).doc
《弹性力学答案(共13页).doc》由会员分享,可在线阅读,更多相关《弹性力学答案(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上【1-4】应力和面力的符号规定有什么区别?试画出正坐标面和负坐标面上的正的应力和正的面力的方向。【解答】应力的符号规定是:当作用面的外法线方向指向坐标轴方向时(即正面时),这个面上的应力(不论是正应力还是切应力)以沿坐标轴的正方向为正,沿坐标轴的负方向为负。当作用面的外法线指向坐标轴的负方向时(即负面时),该面上的应力以沿坐标轴的负方向为正,沿坐标轴的正方向为负。面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负。由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反。 正的应力正的面力【2-1】试分析说明,在不受任何面
2、力作用的空间体表面附近的薄层中(图2-14)其应力状态接近于平面应力的情况。【解答】在不受任何面力作用的空间表面附近的薄层中,可以认为在该薄层的上下表面都无面力,且在薄层内所有各点都有,只存在平面应力分量,且它们不沿z方向变化,仅为x,y的函数。可以认为此问题是平面应力问题。【2-2】试分析说明,在板面上处处受法向约束且不受切向面力作用的等厚度薄片中(2-15),当板边上只受x,y向的面力或约束,且不沿厚度变化时,其应变状态接近于平面应变的情况。【解答】板上处处受法向约束时,且不受切向面力作用,则(相应)板边上只受x,y向的面力或约束,所以仅存在,且不沿厚度变化,仅为x,y的函数,故其应变状态
3、接近于平面应变的情况。【2-3】在图2-3的微分体中,若将对形心的力矩平很条件改为对角点的力矩平衡条件,试问将导出什么形式的方程?【解答】将对形心的力矩平衡条件,改为分别对四个角点A、B、D、E的平衡条件,为计算方便,在z方向的尺寸取为单位1。 (a) (b) (c) (d)略去(a)、(b)、(c)、(d)中的三阶小量(亦即令都趋于0),并将各式都除以后合并同类项,分别得到。【分析】由本题可得出结论:微分体对任一点取力矩平衡得到的结果都是验证了切应力互等定理。【2-9】试列出图2-17,图2-18所示问题的全部边界条件。在其端部小边界上,应用圣维南原理列出三个积分的应力边界条件。图2-17
4、图2-18【分析】有约束的边界上可考虑采用位移边界条件,若为小边界也可写成圣维南原理的三个积分形式,大边界上应精确满足公式(2-15)。【解答】图2-17:上(y=0)左(x=0)右(x=b)0-11-100000代入公式(2-15)得在主要边界上x=0,x=b上精确满足应力边界条件:在小边界上,能精确满足下列应力边界条件:在小边界上,能精确满足下列位移边界条件:这两个位移边界条件可以应用圣维南原理,改用三个积分的应力边界条件来代替,当板厚时,可求得固定端约束反力分别为:由于为正面,故应力分量与面力分量同号,则有:图2-18上下主要边界y=-h/2,y=h/2上,应精确满足公式(2-15)(s
5、)(s)0-1001-0,在=0的小边界上,应用圣维南原理,列出三个积分的应力边界条件:负面上应力与面力符号相反,有在x=l的小边界上,可应用位移边界条件这两个位移边界条件也可改用三个积分的应力边界条件来代替。首先,求固定端约束反力,按面力正方向假设画反力,如图所示,列平衡方程求反力:由于x=l为正面,应力分量与面力分量同号,故【2-19】试证明,如果体力虽然不是常量,但却是有势的力,即体力分量可以表示为,其中V是势函数,则应力分量亦可用应力函数表示成为,试导出相应的相容方程。【解答】(1)将带入平衡微分方程(2-2) (a)将(a)式变换为 (b)为了满足式(b),可以取即(2)对体力、应力
6、分量求偏导数,得 (c)将(c)式代入公式(2-21)得平面应力情况下应力函数表示的相容方程 (2-21)整理得: (d)即平面应力问题中的相容方程为将(c)式代入公式(2-22)或将(d)式中的替换为,的平面应变情况下的相容方程: (e)即 。证毕。【3-4】试考察应力函数在图3-8所示的矩形板和坐标系中能解决什么问题(体力不计)? 【解答】相容条件:不论系数a取何值,应力函数总能满足应力函数表示的相容方程,式(2-25).求应力分量当体力不计时,将应力函数代入公式(2-24),得考察边界条件上下边界上应力分量均为零,故上下边界上无面力.左右边界上;当a>0时,考察分布情况,注意到,故
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 弹性 力学 答案 13
限制150内