必修2-直线与方程知识点归纳总结(共7页).doc
《必修2-直线与方程知识点归纳总结(共7页).doc》由会员分享,可在线阅读,更多相关《必修2-直线与方程知识点归纳总结(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第三章 直线与方程1、直线的倾斜角与斜率(1)直线的倾斜角1 关于倾斜角的概念要抓住三点:.与x轴相交; .x轴正向; .直线向上方向.2 直线与x轴平行或重合时,规定它的倾斜角为.3 倾斜角的范围.4 ; (2)直线的斜率直线的斜率就是直线倾斜角的正切值,而倾斜角为的直线斜率不存在。经过两点()的直线的斜率公式是()每条直线都有倾斜角,但并不是每条直线都有斜率。2、两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线,其斜率分别为,则有。特别地,当直线的斜率都不存在时,的关系为平行。(2)两条直线垂直如果两条直线斜率存在,设为,则注:两条直线垂直的充要条件
2、是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果中有一条直线的斜率不存在,另一条直线的斜率为0时,互相垂直。二、直线的方程1、直线方程的几种形式名称方程的形式已知条件局限性点斜式为直线上一定点,为斜率不包括垂直于x轴的直线斜截式为斜率,是直线在y轴上的截距不包括垂直于x轴的直线两点式是直线上两定点不包括垂直于x轴和y轴的直线截距式是直线在x轴上的非零截距,是直线在y轴上的非零截距不包括垂直于x轴和y轴或过原点的直线一般式,为系数无限制,可表示任何位置的直线注:过两点的直线是否一定可用两点式方程表示?(不一定。(1)若,
3、直线垂直于x轴,方程为;(2) 若,直线垂直于y轴,方程为;(3) (3)若,直线方程可用两点式表示)2、线段的中点坐标公式若两点,且线段的中点的坐标为,则 3. 过定点的直线系斜率为且过定点的直线系方程为;过两条直线, 的交点的直线系方程为(为参数),其中直线l2不在直线系中.三、直线的交点坐标与距离公式1.两条直线的交点设两条直线的方程是, 两条直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立。2.几种距离(1)两点间的距离平面上的两点间的距离公式特别地,原点与任一点的距离(2)点到直线的
4、距离点到直线的距离(3)两条平行线间的距离 两条平行线, 间的距离 (注意:1 求点到直线的距离时,直线方程要化为一般式;2 求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算。)补充:1、直线的倾斜角与斜率(1)直线的倾斜角(2) 已知斜率k的范围,求倾斜角的范围时,若k为正数,则的范围为的子集,且k=tan为增函数;若k为负数,则的范围为的子集,且k=tan为增函数。若k的范围有正有负,则可所范围按大于等于0或小于0分为两部分,针对每一部分再根据斜率的增减性求倾斜角范围。 2、利用斜率证明三点共线的方法:已知若,则有A、B、C三点共线。注:斜率变化分成两段,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 直线 方程 知识点 归纳 总结
限制150内