2017年广东省广州市中考数学试卷含解析(共27页).doc
《2017年广东省广州市中考数学试卷含解析(共27页).doc》由会员分享,可在线阅读,更多相关《2017年广东省广州市中考数学试卷含解析(共27页).doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2017年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为() A6 B6 C0 D无法确定2(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为() A BCD3(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A12,14B12,15C15,14D15,134(3分)下列运算正确的是()A=B2×=C=aD|a|
2、=a(a0)5(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()Aq16Bq16Cq4Dq46(3分)如图,O是ABC的内切圆,则点O是ABC的()A三条边的垂直平分线的交点B三条角平分线的交点C三条中线的交点D三条高的交点7(3分)计算(a2b)3的结果是()Aa5b5Ba4b5Cab5Da5b68(3分)如图,E,F分别是ABCD的边AD、BC上的点,EF=6,DEF=60°,将四边形EFCD沿EF翻折,得到EFCD,ED交BC于点G,则GEF的周长为()A6B12C18D249(3分)如图,在O中,AB是直径,CD是弦,ABCD,垂足为E,
3、连接CO,AD,BAD=20°,则下列说法中正确的是()AAD=2OBBCE=EOCOCE=40°DBOC=2BAD10(3分)a0,函数y=与y=ax2+a在同一直角坐标系中的大致图象可能是()ABCD二、填空题(本大题共6小题,每小题3分,共18分)11(3分)如图,四边形ABCD中,ADBC,A=110°,则B= 12(3分)分解因式:xy29x= 13(3分)当x= 时,二次函数y=x22x+6有最小值 14(3分)如图,RtABC中,C=90°,BC=15,tanA=,则AB= 15(3分)如图,圆锥的侧面展开图是一个圆心角为120°
4、的扇形,若圆锥的底面圆半径是,则圆锥的母线l= 16(3分)如图,平面直角坐标系中O是原点,ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG则下列结论:F是OA的中点;OFD与BEG相似;四边形DEGF的面积是;OD=其中正确的结论是 (填写所有正确结论的序号)三、解答题(本大题共9小题,共102分)17(9分)解方程组18(9分)如图,点E,F在AB上,AD=BC,A=B,AE=BF求证:ADFBCE19(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),
5、将学生分成五类:A类(0t2),B类(2t4),C类(4t6),D类(6t8),E类(t8)绘制成尚不完整的条形统计图如图根据以上信息,解答下列问题:(1)E类学生有 人,补全条形统计图;(2)D类学生人数占被调查总人数的 %;(3)从该班做义工时间在0t4的学生中任选2人,求这2人做义工时间都在2t4中的概率20(10分)如图,在RtABC中,B=90°,A=30°,AC=2(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若ADE的周长为a,先化简T=(a+1)2a(a1),再求T的值21(12分)甲、乙两个工程队均参与某
6、筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里22(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3(1)求m和k的值;(2)结合图象求不等式3x+m的解集23(12分)已知抛物线y1=x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(1,5),点A与y1的顶点B的距离是4(1)求y1的解析式;(2)若y2随
7、着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式24(14分)如图,矩形ABCD的对角线AC,BD相交于点O,COD关于CD的对称图形为CED(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm求sinEAD的值;若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间25(14分)如图,AB是O的直径,=,AB=2,连接AC(1)求证:CAB=
8、45°;(2)若直线l为O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD试探究AE与AD之间的是数量关系,并证明你的结论;是否为定值?若是,请求出这个定值;若不是,请说明理由2017年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A6B6C0D无法确定【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可【解答】解:数轴上两点A,B表示的数互为相反数,点A表示的数为6,点B表示的数为6,故选B【点评】此
9、题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键2(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为()ABCD【分析】根据旋转的性质即可得到结论【解答】解:由旋转的性质得,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为A,故选A【点评】本题考查了旋转的性质,正方形的性质,正确的识别图形是解题的关键3(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为()A12,14B12,15C15,14D15,13【分
10、析】观察这组数据发现15出现的次数最多,进而得到这组数据的众数为15,将六个数据相加求出之和,再除以6即可求出这组数据的平均数【解答】解:这组数据中,12出现了1次,13出现了1次,14出现了1次,15出现了3次,这组数据的众数为15,这组数据分别为:12、13、14、15、15、15这组数据的平均数=14故选C【点评】此题考查了众数及算术平均数,众数即为这组数据中出现次数最多的数,算术平均数即为所有数之和与数的个数的商4(3分)下列运算正确的是()A=B2×=C=aD|a|=a(a0)【分析】直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案【解答】解:A、无法
11、化简,故此选项错误;B、2×=,故此选项错误;C、=|a|,故此选项错误;D、|a|=a(a0),正确故选:D【点评】此题主要考查了分式的基本性质以及绝对值的性质、二次根式的性质,正确掌握相关性质是解题关键5(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()Aq16Bq16Cq4Dq4【分析】根据方程的系数结合根的判别式,即可得出=644q0,解之即可得出q的取值范围【解答】解:关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,=824q=644q0,解得:q16故选A【点评】本题考查了根的判别式,牢记“当0时,方程有两个不相等的实数根
12、”是解题的关键6(3分)如图,O是ABC的内切圆,则点O是ABC的()A三条边的垂直平分线的交点B三条角平分线的交点C三条中线的交点D三条高的交点【分析】根据三角形的内切圆得出点O到三边的距离相等,即可得出结论【解答】解:O是ABC的内切圆,则点O到三边的距离相等,点O是ABC的三条角平分线的交点;故选:B【点评】本题考查了三角形的内切圆与内心;熟练掌握三角形的内切圆的圆心性质是关键7(3分)计算(a2b)3的结果是()Aa5b5Ba4b5Cab5Da5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案【解答】解:原式=a6b3=a5b5,故选:A【点评】本题考查了分式的乘除法,熟记法
13、则并根据法则计算是解题关键8(3分)如图,E,F分别是ABCD的边AD、BC上的点,EF=6,DEF=60°,将四边形EFCD沿EF翻折,得到EFCD,ED交BC于点G,则GEF的周长为()A6B12C18D24【分析】根据平行四边形的性质得到ADBC,由平行线的性质得到AEG=EGF,根据折叠的性质得到GEF=DEF=60°,推出EGF是等边三角形,于是得到结论【解答】解:四边形ABCD是平行四边形,ADBC,AEG=EGF,将四边形EFCD沿EF翻折,得到EFCD,GEF=DEF=60°,AEG=60°,EGF=60°,EGF是等边三角形,
14、EF=6,GEF的周长=18,故选C【点评】本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定,熟练掌握翻折变换的性质是解决问题的关键9(3分)如图,在O中,AB是直径,CD是弦,ABCD,垂足为E,连接CO,AD,BAD=20°,则下列说法中正确的是()AAD=2OBBCE=EOCOCE=40°DBOC=2BAD【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到BOC=40°,则根据互余可计算出OCE的度数,于是可对各选项进行判断【解答】解:ABCD,=,CE=DE,BOC=2BAD=40°,OCE=90°40°
15、;=50°故选D【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了圆周角定理10(3分)a0,函数y=与y=ax2+a在同一直角坐标系中的大致图象可能是()ABCD【分析】分a0和a0两种情况分类讨论即可确定正确的选项【解答】解:当a0时,函数y=的图象位于一、三象限,y=ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a0时,函数y=的图象位于二、四象限,y=ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D【点评】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大二、填空题(本
16、大题共6小题,每小题3分,共18分)11(3分)如图,四边形ABCD中,ADBC,A=110°,则B=70°【分析】根据平行线的性质即可得到结论【解答】解:ADBC,A+B=180°,又A=110°,B=70°,故答案为:70°【点评】本题考查了平行线的性质,熟练掌握平行线的性质即可得到结论12(3分)分解因式:xy29x=x(y+3)(y3)【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解【解答】解:xy29x=x(y29)=x(y3)(y+3)故答案为:x(y3)(y+3)【点评】本题考查对多项式的分解能力,一般先
17、考虑提公因式,再考虑利用公式分解因式,要注意分解因式要彻底,直到不能再分解为止13(3分)当x=1时,二次函数y=x22x+6有最小值5【分析】把x22x+6化成(x1)2+5,即可求出二次函数y=x22x+6的最小值是多少【解答】解:y=x22x+6=(x1)2+5,当x=1时,二次函数y=x22x+6有最小值5故答案为:1、5【点评】此题主要考查了二次函数的最值,要熟练掌握,确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值14(3分)如图,RtABC中
18、,C=90°,BC=15,tanA=,则AB=17【分析】根据A的正切求出AC,再利用勾股定理列式计算即可得解【解答】解:RtABC中,C=90°,tanA=,BC=15,=,解得AC=8,根据勾股定理得,AB=17故答案为:17【点评】本题考查了解直角三角形,勾股定理,主要利用了锐角的正切等于对边比邻边15(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l=3【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长【解答】解:圆锥的底面周长=2×=2cm,则:=2,解得l=3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 广东省 广州市 中考 数学试卷 解析 27
限制150内