因子分析原理PPT课件.ppt
《因子分析原理PPT课件.ppt》由会员分享,可在线阅读,更多相关《因子分析原理PPT课件.ppt(87页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于因子分析原理1第一张,PPT共八十七页,创作于2022年6月2 1 1 引言引言 因子分析(factor analysis)是一种数据简化的技术。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个假想变量来表示其基本的数据结构。这几个假想变量能够反映原来众多变量的主要信息。原始的变量是可观测的显在变量,而假想变量是不可观测的潜在变量,称为因子。例如,在企业形象或品牌形象的研究中,消费者可以通过一个有24个指标构成的评价体系,评价百货商场的24个方面的优劣。第二张,PPT共八十七页,创作于2022年6月3 但消费者主要关心的是三个方面,即商店的环境、商店的服务和商品
2、的价格。因子分析方法可以通过24个变量,找出反映商店环境、商店服务水平和商品价格的三个潜在的因子,对商店进行综合评价。而这三个公共因子可以表示为:称 是不可观测的潜在因子。24个变量共享这三个因子,但是每个变量又有自己的个性,不被包含的部分,称为特殊因子。第三张,PPT共八十七页,创作于2022年6月4注:注:因子分析与回归分析不同,因子分析中的因子是一因子分析与回归分析不同,因子分析中的因子是一个比较抽象的概念,而回归因子有非常明确的实际意义;个比较抽象的概念,而回归因子有非常明确的实际意义;主成分分析分析与因子分析也有不同,主成分主成分分析分析与因子分析也有不同,主成分分析仅仅是变量变换,
3、而因子分析需要构造因子模分析仅仅是变量变换,而因子分析需要构造因子模型。型。主成分分析主成分分析:原始变量的线性组合表示新的综原始变量的线性组合表示新的综合变量,即主成分;合变量,即主成分;因子分析:潜在的假想变量和随机影响变量的因子分析:潜在的假想变量和随机影响变量的线性组合表示原始变量。线性组合表示原始变量。第四张,PPT共八十七页,创作于2022年6月5 2 因子分析模型因子分析模型 一、数学模型一、数学模型 设 个变量,如果表示为第五张,PPT共八十七页,创作于2022年6月6 称为 公共因子,是不可观测的变量,他们的系数称为因子载荷。是特殊因子,是不能被前m个公共因子包含的部分。并且
4、满足:即不相关;即 互不相关,方差为1。第六张,PPT共八十七页,创作于2022年6月7即互不相关,方差不一定相等,。第七张,PPT共八十七页,创作于2022年6月8用矩阵的表达方式第八张,PPT共八十七页,创作于2022年6月9二、因子分析模型的性质 1、原始变量X的协方差矩阵的分解 D的主对角线上的元素值越小,则公共因子共享的成分越多。第九张,PPT共八十七页,创作于2022年6月10 2、模型不受计量单位的影响 将原始变量X做变换X*=CX,这里Cdiag(c1,c2,cn),ci0。第十张,PPT共八十七页,创作于2022年6月11第十一张,PPT共八十七页,创作于2022年6月12
5、3、因子载荷不是惟一的 设T为一个pp的正交矩阵,令A*=AT,F*=TF,则模型可以表示为且满足条件因子模型的条件第十二张,PPT共八十七页,创作于2022年6月13 三、三、因子载荷矩阵中的几个统计特征因子载荷矩阵中的几个统计特征 1 1、因子载荷、因子载荷a aijij的统计意义的统计意义 因子载荷 是第i个变量与第j个公共因子的相关系数模型为 在上式的左右两边乘以,再求数学期望 根据公共因子的模型性质,有 (载荷矩阵中第i行,第j列的元素)反映了第i个变量与第j个公共因子的相关重要性。绝对值越大,相关的密切程度越高。第十三张,PPT共八十七页,创作于2022年6月14 2 2、变量共同
6、度的统计意义、变量共同度的统计意义定定义义:变量 的共同度是因子载荷矩阵的第i行的元素的平方和。记为统计意义统计意义:两边求方差 所有的公共因子和特殊因子对变量 的贡献为1。如果 非常靠近1,非常小,则因子分析的效果好,从原变量空间到公共因子空间的转化性质好。第十四张,PPT共八十七页,创作于2022年6月15 3 3、公共因子、公共因子 方差贡献的统计意义方差贡献的统计意义因子载荷矩阵中各列元素的平方和 称为所有的 对 的方差贡献和。衡量的相对重要性。第十五张,PPT共八十七页,创作于2022年6月16 3 3 因子载荷矩阵的估计方法因子载荷矩阵的估计方法 设随机向量 的均值为,协方差为,为
7、的特征根,为对应的标准化特征向量,则(一)主成分分析法(一)主成分分析法第十六张,PPT共八十七页,创作于2022年6月17 上式给出的 表达式是精确的,然而,它实际上是毫无价值的,因为我们的目的是寻求用少数几个公共因子解释,故略去后面的p-m项的贡献,有第十七张,PPT共八十七页,创作于2022年6月18 上式有一个假定,模型中的特殊因子是不重要的,因而从 的分解中忽略了特殊因子的方差。第十八张,PPT共八十七页,创作于2022年6月19注:残差矩阵其中S为样本的协方差矩阵。第十九张,PPT共八十七页,创作于2022年6月20 (二)主因子法(二)主因子法 主因子方法是对主成分方法的修正,假
8、定我们首先对变量进行标准化变换。则 R=AA+D R*=AA=R-D称R*为约相关矩阵,为约相关矩阵,R*对角线上的元素是对角线上的元素是 ,而不是1。第二十张,PPT共八十七页,创作于2022年6月21直接求R*的前p个特征根和对应的正交特征向量。得如下的矩阵:第二十一张,PPT共八十七页,创作于2022年6月22 当特殊因子当特殊因子 的方差不为且的方差不为且已知的,问题非常好解决。第二十二张,PPT共八十七页,创作于2022年6月23第二十三张,PPT共八十七页,创作于2022年6月24 在实际的应用中,个性方差矩阵一般都是未知的,可以通过一组样本来估计。估估计计的的方法有如下几种方法有
9、如下几种:首先,求 的初始估计值,构造出1)取 ,在这个情况下主因子解与主成分解等价;2)取 ,为xi与其他所有的原始变量xj的复相关系数的平方,即xi对其余的p-1个xj的回归方程的判定系数,这是因为xi 与公共因子的关系是通过其余的p-1个xj 的线性组合联系起来的;第二十四张,PPT共八十七页,创作于2022年6月25 2)取 ,这意味着取xi与其余的xj的简单相关系数的绝对值最大者;4)取 ,其中要求该值为正数。5)取 ,其中 是 的对角元素。第二十五张,PPT共八十七页,创作于2022年6月28 例例 假定某地固定资产投资率 ,通货膨胀率 ,失业率 ,相关系数矩阵为试用主成分分析法求
10、因子分析模型。第二十八张,PPT共八十七页,创作于2022年6月29 特征根为:第二十九张,PPT共八十七页,创作于2022年6月30 可取前两个因子F1和F2为公共因子,第一公因子F1物价就业因子,对X的贡献为1.55。第一公因子F2为投资因子,对X的贡献为0.85。共同度分别为1,0.706,0.706。第三十张,PPT共八十七页,创作于2022年6月31 假定某地固定资产投资率 ,通货膨胀率 ,失业率 ,相关系数矩阵为试用主因子分析法求因子分析模型。假定用代替初始的 。第三十一张,PPT共八十七页,创作于2022年6月32特征根为:对应的非零特征向量为:第三十二张,PPT共八十七页,创作
11、于2022年6月33第三十三张,PPT共八十七页,创作于2022年6月34 4 因子旋转(正交变换)建立了因子分析数学目的不仅仅要找出公共因子以及对变量进行分组,更重要的要知道每个公共因子的意义,以便进行进一步的分析,如果每个公共因子的含义不清,则不便于进行实际背景的解释。由于因子载荷阵是不惟一的,所以应该对因子载荷阵进行旋转。目的是使因子载荷阵的结构简化,使载荷矩阵每列或行的元素平方值向0和1两极分化。有三种主要的正交旋转法。四次方最大法、方差最大法方差最大法和等量最大法。(一)为什么要旋转因子(一)为什么要旋转因子第三十四张,PPT共八十七页,创作于2022年6月35 百米跑成绩 跳远成绩
12、 铅球成绩 跳高成绩 400米跑成绩 百米跨栏 铁饼成绩 撑杆跳远成绩 标枪成绩 1500米跑成绩奥运会十项全能运动项目奥运会十项全能运动项目得分数据的因子分析得分数据的因子分析第三十五张,PPT共八十七页,创作于2022年6月36第三十六张,PPT共八十七页,创作于2022年6月37 因子载荷矩阵可以看出,除第一因子在所有的变量在公共因子上有较大的正载荷,可以称为一般运动因子。其他的3个因子不太容易解释。似乎是跑和投掷的能力对比,似乎是长跑耐力和短跑速度的对比。于是考虑旋转因子,得下表第三十七张,PPT共八十七页,创作于2022年6月38第三十八张,PPT共八十七页,创作于2022年6月39
13、 通过旋转,因子有了较为明确的含义。百米跑,跳远和 400米跑,需要爆发力的项目在 有较大的载荷,可以称为短跑速度因子;铅球,铁饼和 标枪在 上有较大的载荷,可以称为爆发性臂力因子;百米跨栏,撑杆跳远,跳远和为 跳高在 上有较大的载荷,爆发腿力因子;长跑耐力因子。第三十九张,PPT共八十七页,创作于2022年6月40变换后因子的共同度变换后因子的共同度设 正交矩阵,做正交变换正交矩阵,做正交变换变换后因子的共同度没有发生变化!变换后因子的共同度没有发生变化!(二)旋转方法(二)旋转方法第四十张,PPT共八十七页,创作于2022年6月41变换后因子贡献变换后因子贡献设 正交矩阵,做正交变换正交矩
14、阵,做正交变换变换后因子的贡献发生了变化!变换后因子的贡献发生了变化!第四十一张,PPT共八十七页,创作于2022年6月42 1、方差最大法 方差最大法从简化因子载荷矩阵的每一列出发,使和每个因子有关的载荷的方差最大法从简化因子载荷矩阵的每一列出发,使和每个因子有关的载荷的平方的方差最大。当只有少数几个变量在某个因子上又较高的载荷时,对因平方的方差最大。当只有少数几个变量在某个因子上又较高的载荷时,对因子的解释最简单。子的解释最简单。方差最大的直观意义是希望通过因子旋转后,使每个因子上的载荷尽量拉开距离,一部分的载荷趋于1,另一部分趋于0。第四十二张,PPT共八十七页,创作于2022年6月43
15、第四十三张,PPT共八十七页,创作于2022年6月44第四十四张,PPT共八十七页,创作于2022年6月45第四十五张,PPT共八十七页,创作于2022年6月49 5 因子得分因子得分(一)因子得分的概念(一)因子得分的概念 前面我们主要解决了用公共因子的线性组合来表示一组观测变量的有关问题。如果我们要使用这些因子做其他的研究,比如把得到的因子作为自变量来做回归分析,对样本进行分类或评价,这就需要我们对公共因子进行测度,即给出公共因子的值。第四十九张,PPT共八十七页,创作于2022年6月50 人人均均要要素素变变量量因因子子分分析析。对我国32个省市自治区的要素状况作因子分析。指标体系中有如
16、下指标:X1:人口(万人)X2:面积(万平方公里)X3:GDP(亿元)X4:人均水资源(立方米/人)X5:人均生物量(吨/人)X6:万人拥有的大学生数(人)X7:万人拥有科学家、工程师数(人)Rotated Factor Pattern FACTOR1 FACTOR2 FACTOR3 X1 -0.21522 -0.27397 0.89092 X2 0.63973 -0.28739 -0.28755 X3 -0.15791 0.06334 0.94855 X4 0.95898 -0.01501 -0.07556 X5 0.97224 -0.06778 -0.17535 X6 -0.11416 0
17、.98328 -0.08300 X7 -0.11041 0.97851 -0.07246第五十张,PPT共八十七页,创作于2022年6月51高载荷指标因子命名因子1X2;面积(万平方公里)X4:人均水资源(立方米/人)X5:人均生物量(吨/人)自然资源因子因子2X6:万人拥有的大学生数(人)X7:万人拥有的科学家、工程师数(人)人力资源因子因子3X1;人口(万人)X3:GDP(亿元)经济发展总量因子 X1=-0.21522F1-0.27397F2+0.89092F3 X2=0.63973F1-0.28739F2-0.28755F3 X3=-0.15791F1+0.06334F2+0.94855
18、F3 X4=0.95898F1-0.01501F2-0.07556F3 X5=0.97224F1-0.06778F2-0.17535F3 X6=-0.11416F1+0.98328F2-0.08300F3 X7=-0.11041F1+0.97851F2-0.07246F3第五十一张,PPT共八十七页,创作于2022年6月52 Standardized Scoring Coefficients FACTOR1 FACTOR2 FACTOR3 X1 0.05764 -0.06098 0.50391 X2 0.22724 -0.09901 -0.07713 X3 0.14635 0.12957 0.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因子分析 原理 PPT 课件
限制150内