抽屉原理优秀教案(共7页).doc
《抽屉原理优秀教案(共7页).doc》由会员分享,可在线阅读,更多相关《抽屉原理优秀教案(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上优秀教案数学广角抽屉原理实验小学潘 聪 聪数学广角抽屉原理【教学内容】:我说讲课的内容是人教版六年级数学下册数学广角抽屉原理第一课时,也就是教材70-71页的例1和例2。【教学目标】:知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。【教学重点】:1、经历“
2、抽屉原理”的探究过程,初步了解“抽屉原理”。2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。【教学难点】:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。【教法和学法】:以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。【教学准备】:一定数量的笔、铅笔盒、课件。【教学过程】:一、游戏激趣,初步体验师:同学们喜欢做游戏吗?学习新课之前,我们先做个游戏,老师这里准备了2张凳子,请3个同学上来,(找生)听清要求,老师说“请坐”时,每个同学必须都坐下,谁没坐下谁犯规,(师背对)听明白了吗?好“请坐!”告诉老师他们都坐下了吗?老师不用看,就知道一定有一张凳
3、子上至少坐了两名同学,对吗?假如请这3位同学再反复坐几次,老师还敢肯定地说:“不管怎么坐,总有一张凳子上至少坐2名同学,你们相信吗?其实这个游戏里面蕴藏着一个非常有趣的数学原理,想不想通过自己动手实践来发现它?【设计意图:在课前进行的游戏激趣,一是激发学生的兴趣,引起探究的愿望;二为今天的探究埋下伏笔。】二、操作探究,发现规律1、小组合作,初步感知。师:下面我们先从简单的情况入手,请看大屏幕(出示例1:4只铅笔放入3个盒子中),有几种不同的放法?你能得到什么结论?下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快?(1)、学生动手操作,讨论交流,老师巡视,指导;(2)、全班交流。师:
4、哪个小组愿意汇报一下你们的研究成果?(找生展示,师板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。师:老师也是这样摆的,我们一起看一下(课件演示)观察这几种放法,你能得到什么结论?(课件出示:不管怎么放,总有一个文具盒中至少有2枝铅笔)。师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?(生答 “平均分”的方法时,课件演示)每个盒子先放1枝,还剩几枝?(1枝)这1枝怎么摆?(放哪个里面都行)你有什么发现?(无论怎么放,总有1个盒子至少放2枝铅笔)。师:既然是平均分,能用算式表示吗?(生答,师板书:4÷3=11)师:这里
5、的4指的是什么?3呢?商1呢?余数1呢?师:看来解决这个问题时,用平均分的方法比较简便。【设计意图通过让学生自己动手操作,用列举法找出四枝铅笔放入三个盒子的所有方法,观察总结概括出四种方法的共同点,即总有一个盒子里至少有2枝铅笔,让学生充分理解“总有”、“至少”的含义。】2、逐步深入,建立模型(1)初建模型如果把5枝铅笔放入4个盒子(出示),会是什么结果呢?(生答),你怎么想的?(生说)能用算式表示吗?(生答,师板书:5÷4=11)增加难度:把100支铅笔放进99个盒子呢? m+ 1铅笔放进m个盒子呢?师:你有什么发现?(铅笔数比盒子数多1时,无论怎么放,总有一个盒子至少放2枝铅笔)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抽屉 原理 优秀 教案
限制150内