电磁场电磁波第四章时变电磁场优秀PPT.ppt
《电磁场电磁波第四章时变电磁场优秀PPT.ppt》由会员分享,可在线阅读,更多相关《电磁场电磁波第四章时变电磁场优秀PPT.ppt(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、电磁场电磁波第四章时变电磁场1现在学习的是第1页,共33页4.1 波动方程波动方程 在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒质,则有在无源空间中,设媒质是线性、各向同性且无损耗的均匀媒质,则有 无源区的波动方程无源区的波动方程 波动方程波动方程 二二阶矢量微分方程,阶矢量微分方程,揭示电磁场的波动性。揭示电磁场的波动性。麦克斯韦方程麦克斯韦方程 一阶矢量微分方程组,描述电场与磁场一阶矢量微分方程组,描述电场与磁场 间的相互作用关系。间的相互作用关系。麦克斯韦方程组麦克斯韦方程组 波动方程。波动方程。问题的提出问题的提出电磁波动方程电磁波动方程2现在学习的是第2页,共33页同理可得同
2、理可得 推证推证 问题问题 若为有源空间,结果如何?若为有源空间,结果如何?若为导电媒质,结果如何?若为导电媒质,结果如何?3现在学习的是第3页,共33页引入位函数来描述时变电磁场,使一些问题的分析得到简化。引入位函数来描述时变电磁场,使一些问题的分析得到简化。引入位函数的意义引入位函数的意义 位函数的定义位函数的定义4现在学习的是第4页,共33页 位函数的不确定性位函数的不确定性 满满足足下下列列变变换换关关系系的的两两组组位位函函数数 和和 能能描描述述同同一一个个电磁场问题。电磁场问题。即即也就是说,对一给定的电磁场可用不同的位函数来描述。也就是说,对一给定的电磁场可用不同的位函数来描述
3、。不同位函数之间的上述变换称为规范变换。不同位函数之间的上述变换称为规范变换。原因原因:未规定:未规定 的散度。的散度。为任意可微函数为任意可微函数5现在学习的是第5页,共33页除了利用洛仑兹条件外,另一种常用的是库仑条件,即除了利用洛仑兹条件外,另一种常用的是库仑条件,即 在电磁理论中,通常采用洛仑兹条件,即在电磁理论中,通常采用洛仑兹条件,即 位函数的规范条件位函数的规范条件 造成位函数的不确定性的原因就是没有规定造成位函数的不确定性的原因就是没有规定 的散度。利用位的散度。利用位函数的不确定性,函数的不确定性,可通过规定可通过规定 散度使位函数满足的方程得以散度使位函数满足的方程得以简化
4、。简化。6现在学习的是第6页,共33页 位函数的微分方程位函数的微分方程7现在学习的是第7页,共33页同样同样8现在学习的是第8页,共33页 说明说明 应用洛仑兹条件的特点:应用洛仑兹条件的特点:位函数满足的方程在形式上是对称位函数满足的方程在形式上是对称 的,且比较简单,易求解;的,且比较简单,易求解;解的物理意义非常清楚,明确地解的物理意义非常清楚,明确地 反映出电磁场具有有限的传递速度;反映出电磁场具有有限的传递速度;矢量位只决定于矢量位只决定于J,标,标 量位只决定于量位只决定于,这对求解方程特别有利。只需解出这对求解方程特别有利。只需解出A,无需,无需 解出解出 就可得到待求的电场和
5、磁场。就可得到待求的电场和磁场。电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应 用不同的规范条件,矢量位用不同的规范条件,矢量位A和标量位和标量位 的解也不相同,但最终的解也不相同,但最终 得到的电磁场矢量是相同的。得到的电磁场矢量是相同的。9现在学习的是第9页,共33页 进入体积进入体积V的能量体积的能量体积V内增加的能量体积内增加的能量体积V内损耗的能量内损耗的能量电场能量密度电场能量密度:磁场能量密度磁场能量密度:电磁能量密度电磁能量密度:空间区域空间区域V中的电磁能量中的电磁能量:特点特点:当场随时间变化时,空间各点的电磁场
6、能量密度也要随:当场随时间变化时,空间各点的电磁场能量密度也要随 时间改变,从而引起电磁能量流动。时间改变,从而引起电磁能量流动。电磁能量守恒关系:电磁能量守恒关系:电磁能量及守恒关系电磁能量及守恒关系10现在学习的是第10页,共33页其中其中:单位时间内体积单位时间内体积V 中所增加中所增加 的电磁能量。的电磁能量。单位时间内电场对体积单位时间内电场对体积V中的电流所做的功;中的电流所做的功;在导电媒质中,即为体积在导电媒质中,即为体积V内总的损耗功率。内总的损耗功率。通过曲面通过曲面S 进入体积进入体积V 的电磁功率。的电磁功率。表征电磁能量守恒关系的定理表征电磁能量守恒关系的定理积分形式
7、积分形式:坡坡印廷定理印廷定理微分形式微分形式:11现在学习的是第11页,共33页在线性和各向同性的媒质中,当参数都不随时间变化时,则有在线性和各向同性的媒质中,当参数都不随时间变化时,则有将以上两式相减,得到将以上两式相减,得到由由 推证推证12现在学习的是第12页,共33页即可得到坡印廷定理的微分形式即可得到坡印廷定理的微分形式再利用矢量恒等式再利用矢量恒等式:在在任任意意闭闭曲曲面面S 所所包包围围的的体体积积V上上,对对上上式式两两端端积积分分,并并应应用用散散度度定定理理,即即可得到坡印廷定理的积分形式可得到坡印廷定理的积分形式 物理意义:物理意义:单位时间内,通过曲面单位时间内,通
8、过曲面S 进入体积进入体积V的电磁能量等于的电磁能量等于 体积体积V 中所增加的电磁场能量与损耗的能量之和。中所增加的电磁场能量与损耗的能量之和。13现在学习的是第13页,共33页 定义:定义:(W/m2)物理意义物理意义:的方向的方向 电磁能量传输的方向电磁能量传输的方向 的大小的大小 通过垂直于能量传输方通过垂直于能量传输方 向的单位面积的电磁功率向的单位面积的电磁功率 描述时变电磁场中电磁能量传输的一个重要物理量描述时变电磁场中电磁能量传输的一个重要物理量 坡印廷矢量(电磁能流密度矢量)坡印廷矢量(电磁能流密度矢量)14现在学习的是第14页,共33页4.4 惟一性定理惟一性定理 在以闭曲
9、面在以闭曲面S为边界的有界区域为边界的有界区域V 内,内,如果给定如果给定t0 时刻的电场强度和磁场强度时刻的电场强度和磁场强度的初始值,并且在的初始值,并且在 t 0 时,给定边界面时,给定边界面S上的电场强度的切向分量或磁场强度的切向分量,那么,在上的电场强度的切向分量或磁场强度的切向分量,那么,在 t 0 时,区时,区域域V 内的电磁场由麦克斯韦方程惟一地确定。内的电磁场由麦克斯韦方程惟一地确定。惟一性定理的表述惟一性定理的表述 在分析有界区域的时变电磁场问题时,常常需要在给定的初始条件和在分析有界区域的时变电磁场问题时,常常需要在给定的初始条件和边界条件下,求解麦克斯韦方程。那么,在什
10、么定解条件下,有界区域中边界条件下,求解麦克斯韦方程。那么,在什么定解条件下,有界区域中的麦克斯韦方程的解才是惟一的呢?这就是麦克斯韦方程的解的惟一问题。的麦克斯韦方程的解才是惟一的呢?这就是麦克斯韦方程的解的惟一问题。惟一性问题惟一性问题15现在学习的是第15页,共33页 惟一性定理的证明惟一性定理的证明 利用反证法对惟一性定理给予证明。假设区域利用反证法对惟一性定理给予证明。假设区域内的解不是惟内的解不是惟一的,那么至少存在两组解一的,那么至少存在两组解 、和和 、满足同样的满足同样的麦克斯韦方程,且具有相同的初始条件和边界条件。麦克斯韦方程,且具有相同的初始条件和边界条件。则在区域则在区
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁场 电磁波 第四 变电 磁场 优秀 PPT
限制150内