根的存在性证明(零点定理)(共1页).doc
《根的存在性证明(零点定理)(共1页).doc》由会员分享,可在线阅读,更多相关《根的存在性证明(零点定理)(共1页).doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
精选优质文档-倾情为你奉上根的存在性定理:如果在闭区间a,b上连续。证明 利用构造法的思想,将的零点范围逐步缩小。先将a,b二等分为,如果。则定理获证。如果,则f(a)和f(b)中必然有一个与异号,记这个小区间为,它满足。又将二等分,考虑中点的函数值,要么为零,要么不为零。如果中点的函数值为零,则定理获证。如果中点的函数值不为零,那么必然可以选出一个小区间,使得f(x)在这个区间的端点值异号,记这个小区间为,它满足a,b,。采用这样的方法一直进行下去,或者到有限步时,某个区间的中点的函数值为零,这样定理的结论成立。或者所有区间的中点的函数值不为零,那么我们就会得到一个无穷的区间序列,它满足:a,b;。 由单调有界定理,可以得到,如果,则定理获证。如果,因为f(x)在点连续,因而由连续函数的局部保号性:存在一个,使得f(x)在上与同号。根据所构造的区间的性质,存在正整数N,当n>N时,。根据区间的性质,矛盾。综上所述,只有,且。定理获证。 注:上面采用的证明方法是非常有用的二分法,其思想可以广泛的应用于各个领域,而实际上是函数零点的近似值。专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 存在 证明 零点 定理
限制150内