10kW直流开关电源设计(共54页).doc
《10kW直流开关电源设计(共54页).doc》由会员分享,可在线阅读,更多相关《10kW直流开关电源设计(共54页).doc(54页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上摘 要开关电源具有效率高、体积小、重量轻等显著特点。目前世界各国都有广泛的应用,特别是对大容量高频开关电源的研究和开发已成为当今电力电子学的主要研究领域,并派生了很多新的研究方向。本设计的题目为10kW直流开关电源的设计,直流开关电源的工作原理:电网输送来的交流电经整流滤波电路变为直流,经过高频逆变电路变为高频交流,通过高频变压器将高频交流电变压,然后高频交流电经单相桥式整流滤波电路变为直流。根据直流开关电源的工作原理确定设计方案,选择三相桥式不控整流滤波电路作为主电路的输入级电路,通过分析比较各种变化器的优缺点,选用移相式全桥变换器,设计了高频变压器,选择单相桥式整
2、流电路作为主电路的输出级电路,在电压调节环节上,详细分析了基于UC3825控制芯片的PWM控制电路。并根据任务要求完成了IGBT驱动电路、系统反馈电路的、保护电路、辅助电源以及均流电路的设计。本次设计的10kW直流开关电源具有输出电压可调、输出电流大、纹波小等特点。实验结果表明它基本达到设计要求,从而验证了理论分析的正确性,具有广阔的应用前景。关键词:变换器;开关电源;高频变压器;PWM控制AbstractSwitching power supply with high efficiency, small size, light weight and other significant cha
3、racteristics. At present, all the countries in the world have a wide range of applications, especially in the research and development of large capacity and high frequency switching power supply has become a main research field of modern power electronics, and derive a lot of new research directions
4、.The subject of this design is the design of 10kW DC switching power supply, the working principle of DC switching power supply: the grid to the AC rectified filter circuit into a DC, after high frequency inverter circuit into a high-frequency alternating current, high frequency alternating current
5、transformer by high-frequency transformer will, then high frequency AC single-phase bridge rectifier filter circuit for dc. According to the design scheme to determine the working principle of DC switching power supply, selection of three-phase uncontrolled rectifier filter circuit as the input circ
6、uit of main circuit, comparing the advantages and disadvantages of various changes through the analysis, selection of phase-shift full bridge converter, high frequency transformer design, selection of single phase bridge rectifier circuit as output circuit of the main circuit, on the voltage regulat
7、ion part, a detailed analysis of the UC3825 control chip control circuit based on PWM. And the IGBT drive circuit, feedback circuit, protection circuit, auxiliary power supply and a flow equalization circuit is designed according to the requirement of the task.The design of 10kW DC switching power s
8、upply has the characteristics of adjustable output voltage, output current, low ripple. The experimental results show that it meets the design requirement, which verifies the correctness of the theoretical analysis, has a broad application prospect.Keywords: converter;Switching power supply;high-fre
9、quency transformer;PWM control目 录专心-专注-专业第1章 绪论1.1 开关电源的简介开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90
10、年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。开关电源产品广泛应用于工业自动化控制、军工设备、科研设备、LED照明、工控设备、通讯设备、电力设备、仪器仪表、医疗设备、半导体制冷制热、空气净化器,电子冰箱,液晶显示器,LED灯具,通
11、讯设备,视听产品,安防监控,LED灯袋,电脑机箱,数码产品和仪器类等领域。现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。这里主要介绍的只是直流开关电源,其功能是将电能质量较差的电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。因此直流开关电源的分类是依赖DC/DC转换器分类的。也就是说,直流开关电源的分类与DC/DC转换器的分类是基本相同的,DC/DC转换器的分类基本上就是直流开关电源的分类。1.2 开关电源的发展及国外现状自1957年第一只可控硅(SCR)问世后,可控硅取代了笨重而且效率低下的硒或氧化亚
12、铜整流器件,可控硅整流器就作为通信设备的一次电源使用。在随后的20年内,由于半导体工艺的进步,可控硅的电压、电流额定值及其它特性参数得到了不断提高和改进,满足了通信设备不断发展的需要,因此,直到70年代,发达国家还一直将可控硅整流器作为大多数通信设备的一次电源使用。虽然可控硅整流器工作稳定,能满足通信设备的要求,但它是相控电源,工作于工频,有庞大笨重的电源变压器、电感线圈、滤波电容,噪声大,效率低,功率因数低,稳压精度也较低。因此,自1947年肖克莱发明晶体管,并在随后的几年内对晶体管的质量和性能不断完善提高后,人们就着力研究利用晶体管进行高频变换的方案。1955年美国罗耶(GH·R
13、oger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换电路的开始, 1957年美国查赛(JJ·Jen Sen)又发明了自激式推挽双变压器变换器电路。在此基础上,1964年,美国科学家提出了取消工频变压器的串联开关电源的设想,并在NEC杂志上发表了“脉宽调制应用于电源小型化”等文章,为使电源实现体积和重量的大幅下降提供了一条根本途径。随着大功率硅晶体管的耐压提高和二极管反向恢复时间的缩短等元器件性能的改善,1969年终于做成了25kHz的开关电源。电源界把开关电源的频率提高到20kHz以上称为电源技术的“20kHz革命”。经过几年的努力,从开关电源的电路拓扑型式到相配套的
14、元器件等研究都取得了相当大的进展。在电路拓扑型式上开发出了单端贮能式反激电路、双反激电路、单端正激式电路、双正激电路、推挽电路、半桥电路、全桥电路,以适应不同应用场合、不同功率档次的需要;在元器件方面,功率晶体管和整流二极管的性能也有了较大的提高。1976年美国硅通用公司第一个做出了型号为SG1524的脉宽调制(PWM, Pulse Width Modulation)控制芯片,极大地提高了开关电源的可靠性,并进一步减小了体积。在随后的几年中,大功率晶体管(GTR)和功率场效应管(MOSFET)相继被研制出来,其电压、电流额定值大为提高,工作频率也提高较多,可靠性也显著增加。到80年代中后期,绝
15、缘栅双极性晶体管(IGBT)已研制出来并投入了市场,各种通信设备所需的一次电源大多采取PWM 集成控制芯片、双极型晶体管、场效应管、绝缘栅双极晶体管。随着微电子学的发展和元器件生产技术的提高,相继开发出了耐压高的功率场效应管(VMOS管)和高电压、大电流的绝缘栅双极性晶体管(IGBT),具有软恢复特性的大功率高频整流管,各种用途的集成脉宽调制控制器和高性能的铁氧体磁芯,高频用的电解电容器,低功耗的聚丙烯电容等。主要元器件技术性能的提高,为高频开关电源向大功率、高效率、高可靠性方向发展奠定了良好基础。随着通信用开关电源技术的广泛应用和不断深入,实际工作中人们对开关电源提出了更高的要求,提出了应用
16、技术的高频化、硬件结构的模块化、软件控制的数字化、产品性能的绿色化、新一代电源的技术含量大大提高,使之更加可靠、稳定、高效、小型、安全。在高频化方面,为提高开关频率并克服一般的PWM和准谐振、多谐振变换器的缺点,又开发了相移脉宽调制零电压开关谐振变换器,这种电路克服了PWM方式硬开关造成的较大的开关损耗的缺点,又实现了恒频工作,克服了准谐振和多谐振变换器工作频率变化及电压、电流幅度大的缺点。采用这种工作原理,大大减小了开关管的损耗,不但提高了效率也提高了工作频率,减小了体积,更重要的是降低了变换电路对分布参数的敏感性,拓宽了开关器件的安全工作区,在一定程度上降低了对器件的要求,从而显著提高了开
17、关电源的可靠性。1.3 国内开关电源的发展及现状建国初期,我国邮电部门的科研技术人员开发了以国产大功率电动发电机组为主的成套设备作为开关电源用于通信。在引进原民主德国FGD系列和前苏联BCC51系列自动化硒整流器基础上,借鉴国外先进技术,与工厂共同研制成功国产XZL系列自动化硒整流器,并在武汉通信电源厂批量生产,开始用硒整流器装备通信局(站),替换原有的电动发电机组,这标志着我国国产开关电源设备跃到一个新的水平。但后来,我国的开关电源发展相当缓慢。1963年开始研制和采用可控硅(SCR)整流器,1965年着手研制逆变器和晶体管直流直流(DC/DC)变换器,当时与发达国家相比只落后五六年.后由于
18、十年动乱,研制工作一直停滞不前,除了可控硅整流器于1967年在武汉通信电源厂开始形成系列化生产,供通信设备作一次电源使用,并不断得到改进,性能和质量逐步提高外,其它方面进展十分缓慢。一直到80年代才开始生产20kHz DC/DC变换器,但由于受元器件性能的影响,质量很不稳定,无法作为通信设备的一次电源使用。只是作为通信设备的二次电源使用(二次电源对元器件的耐压及电流要求较低)。直到上世纪90年代初,我国大多数通信设备所用的一次电源仍然是可控硅整流器。这种电源工作于工频50Hz,有庞大的工频变压器、电感线圈、电解电容等,笨重庞大、效率低、噪声大、性能指标低,不易实现集中监控。由于通信事业发展的需
19、要,八十年代后期,邮电部加强了开关电源技术发展的各项工作,制订了“通信基础电源系统设备系列暂行规定”,“通信局(站)电源系统总技术要求”和电源设备行业标准等文件,多次派代表参加国际电信能源会议,并在八十年代后期才第一批引进了澳大利亚生产的48V/50A(开关频率为40kHz)和48V/100A(开关频率为20kHz)的高频开关电源,在吸收国外先进技术的基础上,投入较大的力量,开始研制自己的开关电源。邮电部武汉电源厂、通信仪表厂等厂家开发出了自己的以PWM方式工作的开关电源,并推向电信行业应用,取得了较好的效果.随后邮电部对电源提出了更新换代和实现监控(包括远程监控)的要求,众多厂家都投入力量研
20、制开发,推出了采用PWM技术的高频开关电源,有些厂家还推出了实现远程监控的解决方案,短短几年后,电信部门所用的一次通信电源几乎都更换成了采用PWM 集成控制芯片、大功率晶体管、功率场效应管、绝缘栅双极晶体管的半桥或全桥电路,其开关频率为几十100kHz、效率高于90%、功率因数接近1。稳压精度优于0.5%,模块化组合的高频开关电源,电信行业成套电源技术提高到了一个崭新的水平。总的说来,开关电源的发展趋势为:继续向高频、高效、高可靠、高密度化、低耗、低噪声、抗干扰和模块化发展。第2章 系统分析和设计方案确定本章从整体上对开关电源的各种功能模块进行了介绍,主要阐述了各模块的结构、功能以及相互之间的
21、关系,其中重点介绍了主变换器和控制电路,对当前开关电源常用的变换器的结构、优缺点、适用范围等进行了分析,在此基础上,结合本文的实际情况,选择了合适的变换器结构;在控制电路部分,介绍了开关电源控制电路各控制单元的功能以及实现方法。最后对开关电源整流滤波电路进行了简单介绍。2.1系统整体概述按照各部分的功能划分,从大的方面讲,开关电源可分成:电源主电路和电源控制电路两部分。电源的主电路是负责进行功率转换的部分,通过适当的控制电路可以将市电转换为所需的直流输出电压。而控制电路则根据实际的需要产生主电路所需的控制脉冲和提供各种保护功能。开关电源的结构框图可如图2.1所示。EMI滤波器整流滤波高频变换器
22、高频变压器高频整流滤波输出辅助电源PWM调节器误差比较放大器电压电流取样电路基准电压保护电路控制电路ACDC图2.1 开关电源的结构框图从图中可以看出,这几部分是相辅相成的统一整体。在电源的研制和开发过程中必须对每一部分都进行认真的分析和研究,才能使所研制的开关电源满足设计要求。电源主电路通过输入整流滤波、DC-DC变换、输市出整流滤波将电转为所需要的直流电压。开关电源的主回路可以分为:输入整流滤波回路、功率开关桥、输出整流滤波三部分。输入整流滤波回路将交流电通过整流模块变换成含有脉动成分的直流电,然后通过输入滤波电容使得脉动直流电变为较平滑的直流电。功率开关桥将滤波得到的直流电变换为高频的方
23、波电压,通过高频变压器传送到输出侧。最后,由输出整流滤波回路将高频方波电压滤波成为所需要的直流电压或电流,主回路进行正常的功率变换所需的触发脉冲由控制电路提供。控制电路是整个电源的大脑,它控制整个装置工作并实现相应的保护功能。一般控制电路应具有以下功能:控制脉冲产生电路、驱动电路、电压反馈控制电路、各种保护电路、辅助电源电路。为了使开关电源设备正常的工作,使电源的各个组成部分都能发挥其最大的效能,就必须让电源的各个组成部分相互协调、相互协作、在电源的研制与设计过程中应对这方面的问题给予足够的重视。2.2变换器的选择近年来,移相控制全桥变换器由于具有恒频软开关运行、移相控制实现方便、电流和电压应
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 10 kW 直流 开关电源 设计 54
限制150内