2011年—2017年新课标全国卷1理科数学分类汇编——8.立体几何(共16页).doc
《2011年—2017年新课标全国卷1理科数学分类汇编——8.立体几何(共16页).doc》由会员分享,可在线阅读,更多相关《2011年—2017年新课标全国卷1理科数学分类汇编——8.立体几何(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2011年2017年新课标高考全国卷理科数学分类汇编(含答案)8立体几何【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A10 B12 C14 D16【2016,11】平面过正方体的顶点,平面,平面,平面,则所成角的正弦值为( )(A)(B) (C) (D)【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径若该几何体的体积是,则它的表面积是( )(A) (B) (C) (D)【2015,6】
2、九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(A)14斛 (B)22斛 (C)36斛 (D)66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为,则( )(A)1 (B)2 (C)4 (D)8【2014,12】如图,网格纸上小正
3、方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为. . .6 .4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为()Acm3 Bcm3 Ccm3 Dcm3【2013,8】某几何体的三视图如图所示,则该几何体的体积为()A168 B88 C1616 D816【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A6 B9 C D【2012,11】已知三棱锥SABC的所有顶点都在球
4、O的球面上,ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( )A B C D【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )二、填空题【2011,15】已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为 。三、解答题【2017,18】如图,在四棱锥P-ABCD中,AB/CD,且 (1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,求二面角A-PB-C的余弦值【2016,18】如图,在以为顶点的五面体中,面为正方形,且二面角与二面角都是()证明:平面平面;()求二面角的余弦值【2015,18】如图,四
5、边形为菱形,是平面同一侧的两点,平面,平面,.(I)证明:平面平面;(II)求直线与直线所成角的余弦值.【2014,19】如图三棱柱中,侧面为菱形,.() 证明:;()若,AB=BC求二面角的余弦值.【2013,18】如图,三棱柱ABCA1B1C1中,CACB,ABAA1,BAA160°.(1)证明:ABA1C;(2)若平面ABC平面AA1B1B,ABCB,求直线A1C与平面BB1C1C所成角的正弦值【2012,19】如图,直三棱柱ABCA1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1BD。(1)证明:DC1BC;(2)求二面角A1BDC1的大小。【2011,18】如图
6、,四棱锥P-ABCD中,底面ABCD为平行四边形,DAB=60°,AB=2AD,PD底面ABCD.()证明:PABD;()若PD=AD,求二面角A-PB-C的余弦值。2011年2017年新课标高考全国卷理科数学分类汇编(含答案)8立体几何(解析版)【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A10 B12 C14 D16(7)【解析】由三视图可画出立体图,该立体图平面内只有两个相同的梯形的面,故选B;【2016,11】平面过正方体的顶点
7、,平面,平面 ,平面,则所成角的正弦值为( )(A)(B)(C)(D)【解析】:如图所示:,若设平面平面,则又平面平面,结合平面平面,故,同理可得:故、的所成角的大小与、所成角的大小相等,即的大小而(均为面对交线),因此,即故选A【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径若该几何体的体积是,则它的表面积是( )(A)(B)(C)(D)【解析】:原立体图如图所示:是一个球被切掉左上角的后的三视图表面积是的球面面积和三个扇形面积之和故选A【2015,6】九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及
8、为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(A)14斛 (B)22斛 (C)36斛 (D)66斛解析:,圆锥底面半径,米堆体积,堆放的米约有,选(B).【2015,11】圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为,则( )(A)1(B)2(C)4(D)8解析:由正视图和俯视图知,该几何体是半球和半个圆柱的组合体,圆柱的半径与球的半径都,圆柱的
9、高为,其表面积为,解得,故选(B). 【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为. . .6 .4【答案】C【解析】:如图所示,原几何体为三棱锥,其中,故最长的棱的长度为,选C【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为()Acm3 Bcm3 Ccm3 Dcm3答案:A解析:设球半径为R,由题可知R,R2,正方体棱长一半可构成直角三角形,即OBA为直角三角形,如图BC2,BA4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2011 2017 新课 全国卷 理科 数学 分类 汇编 立体几何 16
限制150内