人工智能逻辑优秀课件.ppt
《人工智能逻辑优秀课件.ppt》由会员分享,可在线阅读,更多相关《人工智能逻辑优秀课件.ppt(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人工智能逻辑第1页,本讲稿共48页主要内容主要内容逻辑简介逻辑程序设计非单调逻辑缺省逻辑限定逻辑真值维护系统情景演算第2页,本讲稿共48页1.逻辑简介逻辑简介逻辑的历史逻辑系统命题逻辑谓词逻辑第3页,本讲稿共48页1.1 逻辑的历史Aristotle逻辑学Leibnitz数理逻辑Gottlob Frege(1848-1925)一阶谓词演算系统,符号论20世纪30年代,数理逻辑广泛发展第4页,本讲稿共48页1.2 逻辑系统一个逻辑系统是定义语言和它的含义的方法。逻辑系统中的一个逻辑理论是该逻辑的语言的一个语句集合,它包括:逻辑符号集合逻辑符号集合:在所有该逻辑的逻辑理论中均出现的符号;非逻辑符号
2、集合非逻辑符号集合:不同的逻辑理论中出现的不同的符号;语句规则语句规则:定义什么样的符号串是有意义的;证明证明:什么样的符号串是一个合理的证明;语义规则语义规则:定义符号串的语义。第5页,本讲稿共48页逻辑逻辑程序语言程序语言逻辑符号保留字或者符号非逻辑符号用户自定义的符号(变量名,函数名等)语句规则构造一个程序的语句规则语义规则定义程序做什么的语句规则推理规则、公理和证明没有逻辑与程序语言的对比第6页,本讲稿共48页一个证明证明是一个语法结构,它由符号串根据一定的规则组成。它包括假设和结论。在公理化逻辑中,逻辑给出一个逻辑公理逻辑公理和推理推理规则规则的集合。推理规则是可以从一个语句的集合得
3、到另一语句的集合。公理化逻辑中的证明就是一个语句序列,使得公理化逻辑中的证明就是一个语句序列,使得其中的每个语句要么是逻辑公理,要么是一个假设,其中的每个语句要么是逻辑公理,要么是一个假设,要么是由前面的语句通过推理规则得到的。要么是由前面的语句通过推理规则得到的。证明第7页,本讲稿共48页在语法上,如果存在一个从假设到的证明,则记为 ,称由可推导出的,或可证明的可证明的。如果在没有任何假设下是可推导出的,则记为 ,称为可证明的。称一个假设是不协调的不协调的,如果存在一个语句使得和的否定均可由推导得出。称一个逻辑系统是一致的一致的,或相容的相容的(consistent),如果不存在逻辑系统的公
4、式A,使得A与A同时成立。证 明(语法)第8页,本讲稿共48页语言的解释解释是在某个论语(domain)中定义非逻辑符号。语句的语义是在解释下定义出语言L的真假值。如果I是L的一个解释,且在I中为真,则记为I ,称作I满足,或者I 是的一个模型模型。类似地,给定一个语句和一个语句,如果对每个解释I,有I 蕴含I ,换言之,如果I 是的一个模型则I也是的一个模型,则记为 ,我们称为的一个逻辑结果逻辑结果。解 释(语义)第9页,本讲稿共48页可靠性可靠性(reliable)一个逻辑是可靠的,如果它的证明保持真假值,即在任何解释I下,如果I是 的模型,且可由推导出,则I也是的一个模型。即,一个逻辑是
5、可靠的,如果对任何语句集合和语句,蕴涵 。可靠性和完备性完备性完备性(complete)一个逻辑是完备的,如果任何永真语句是可证的。即,对任何语句集合和语句,蕴涵 。如果一个逻辑是完备的,则该逻辑的证明系统已强到可以推出任何永真式。G Gdeldel完备性定理:完备性定理:一阶逻辑是完备的一阶逻辑是完备的第10页,本讲稿共48页可判定的可判定的一个逻辑称为是可判定的可判定的(decidable),如果存在一个算法对逻辑中的任一公式 A,可确定 A是否成立。否则,称为是不可判定的不可判定的(undecidable)。如果上述算法虽不一定存在,却有一个过程,可对该系统的定理做出肯定的判断,但对非定
6、理的公式过程未必终止,因而未必能作出判断。这时称逻辑是半半可判定的可判定的。可判定性一阶逻辑是不可判定的,但它是半可判定的。一阶逻辑是不可判定的,但它是半可判定的。第11页,本讲稿共48页1.3 命题逻辑命题是可以确定其真假的陈述句。Bolle提出了布尔代数。语言语言:,;公式,原子公式公理模式公理模式:(A(B A)(A(B C)(A B)(A C)(A)(B)(B A)推理规则推理规则:分离规则(modus ponens,MP规则)第12页,本讲稿共48页1.4 谓词逻辑(一阶逻辑)Frege谓词演算语言语言:,(,);常元,变元,函词,谓词;公式公理模式公理模式:(A(B A)(A(B
7、C)(A B)(A C)(A)(B)(B A)vA Atv (t对A中变元v可代入)v(A B)(vA vB)A vA (v在A中无自由出现)推理规则推理规则:分离规则第13页,本讲稿共48页谓词逻辑与命题逻辑的区别谓词逻辑与命题逻辑的区别谓词逻辑给出了原子语句的内部结构,将原子公式看作是事物直接的关系;它引入了“推广”(泛化),加强了逻辑的表示能力和推理能力。这样,我们可以说某种性质对某个对象是成立的,或对所有的对象成立,或不对任何对象成立。第14页,本讲稿共48页2.逻辑程序设计逻辑程序设计消解原理(归结原理)Horn逻辑Prolog逻辑程序设计语言第15页,本讲稿共48页2.1 消解原理
8、消解原理例:C1=PQR C2=PQ则C1与C2消解后的结果为:QR若子句集S能导出空子句(有否证),则称S是不可满足的。反证法:S A iff S A 第16页,本讲稿共48页2.2 Horn逻辑文字文字:原子公式(正文字)或原子公式的否定(负文字)。P,Q,R子句子句:若干文字的析取。PQRHorn子句子句:子句L1L2 Ln中如果至多只含一个正文字,那么该子句称为Horn子句。Horn子句P Q1 Q2 Qn通常表示为:P Q1,Q2,Qn第17页,本讲稿共48页HornHorn子句的类型:子句的类型:过程:P Q1,Q2,Qn 事实:P 目标:Q1,Q2,Qn 空子句:例例:过程:AT
9、(dog,x)AT(Zhang,x)事实:AT(Zhang,train)目标:AT(dog,train)首先目标中过程调用AT(dog,train)与过程名AT(dog,x)匹配,合一为train/x,调用过程AT(Zhang,x),从而产生新目标 AT(Zhang,train),与事实匹配,产生目标。因而调用成功,输出“是”。第18页,本讲稿共48页2.3 PrologProlog(Programming in logic)语言是以Horn子句逻辑为基础的高级程序设计语言。1972年,法国马赛大学的Alain.Colmerauer提出了Prolog的雏型。1975年,Prolog被用于问题求
10、解系统。此后,它在许多领域获得了应用,如关系数据库、定理证明、智能问题求解、计算机辅助设计、规划生成等领域。第19页,本讲稿共48页Prolog的构成的构成事实:关于对象性质和关系的事实语句;student(john),married(tom,mary)规则:关于对象性质和关系的定义规则语句;它与事实的不同在于,规则所定义的性质、关系依赖与其它的性质和关系,因此规则呈蕴涵语句形式。B:A“如果A则B”bird(x):animal(x),has(x,feather)问题:关于对象性质或关系的询问。?student(john)?married(mary,x)第20页,本讲稿共48页Prolog的执
11、行方式的执行方式搜索:在程序中自上而下地搜索事实和规则;匹配:将目标中的项与事实和规则进行匹配;回溯:当目标中一项失败时,如果目标中有已经成功的的项(应在失败项的左边),那末就重新调用这些成功项中最右边的一个,谋求新的成功。第21页,本讲稿共48页Prolog语言的基本文法语言的基本文法Prolog语言的最基本语言成分是项(term),一个项或者是常量,或者是变量,或者是一个结构。常量:是指对象和对象之间的特定关系的名;整数整数,如0,22,1586等;原子原子,如John,student,likes,sister-of变量:表示任意的对象,它与FOL中的变元相同;Prolog中变量可以用大写
12、字母,下划线,以及由它们开头的字母串。如X,Y,Answer,_value等。结构:是常量和变量的序列,它由一个函子(函词或谓词)和该函子的自变量所组成。如:likes(john,X)married(mary,jack)第22页,本讲稿共48页例:(1)likes(bell,sports)(2)likes(mary,smith)(3)likes(mary,sports)(4)likes(jones,smith)(5)friend(john,X):likes(X,sports),likes(X,smith)(规则)(6)?friends(john,Y)(问题)(事实)(7)?likes(X,sp
13、orts),likes(X,smith)(8)?likes(bell,smith)(bell/X)(7)?likes(X,sports),likes(X,smith)(8)?likes(mary,smith)(mary/X)Y=mary,John与与Mary是朋友是朋友第23页,本讲稿共48页Prolog的基本特点的基本特点Horn子句逻辑是Prolog的基础。Prolog既是一种逻辑程序设计语言,又是一个逻辑系统。Prolog是一种描述性语言,它是一种面向问题的语言,你只需要告诉它要做什么,即给出问题的形式描述,而不需要知道应该如何做。Prolog完全依靠匹配、回溯来进行搜索。Prolog的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 逻辑 优秀 课件
限制150内