信息论 第三章优秀课件.ppt
《信息论 第三章优秀课件.ppt》由会员分享,可在线阅读,更多相关《信息论 第三章优秀课件.ppt(53页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、信息论 第三章第1页,本讲稿共53页第一节 信道的数学模型及分类1、信道的分类:根据信道用户的多少,可分为:(1)单用户信道:只有一个输入端和一个输出端(2)多用户信道:至少有一端有两个以上的用户,双向通信根据输入端和输出端的关联:(1)无反馈信道(2)有反馈信道第2页,本讲稿共53页第一节 信道的数学模型及分类根据信道参数与时间的关系:(1)固定参数信道(2)时变参数信道根据输入输出信号的特点 (1)离散信道 (2)连续信道 (3)半离散半连续信道:(4)波形信道以下我们只研究无反馈、固定参数的单用户离散信道。第3页,本讲稿共53页第一节 信道的数学模型及分类P(y/X)XY根据这一模型,可
2、对信道分类如下:设离散信道的输入为一个随机变量X,相应的输出的随机变量为Y,如图所示:规定一个离散信道应有三个参数:输入符号集:X=x1,x2,输出符号集:Y=y1,y2,信道转移概率:P(Y/X)=p(y1/x1),p(y2/x1),p(/x1),p(y1/)p(/)2、离散信道的数学模型第4页,本讲稿共53页第一节 信道的数学模型及分类(1)无干扰信道:输入信号与输出信号 有一一对应关系(2)有干扰无记忆信道:输入与输出无一一对应关系,输出只与当前输入有关;(3)有干扰有记忆信道:这是最一般的信道。第5页,本讲稿共53页第一节 信道的数学模型及分类3、单符号离散信道的数学模型 单符号离散信
3、道的输入变量为X,取值于输出变量为Y,取值于 。并有条件概率条件概率被称为信道的传递概率或转移概率。一般简单的单符号离散信道的数学模型可以用概率空间X,p(y|x),Y来描述。X Y第6页,本讲稿共53页第一节 信道的数学模型及分类P=y1y2ymx1p(y1/x1)p(y2/x1)p(ym/x1)x2p(y1/x2)p(y2/x2)p(ym/x2)xnp(y1/xn)p(y2/xn)p(ym/xn)表示成矩阵形式:第7页,本讲稿共53页第一节 信道的数学模型及分类例1 二元对称信道(BSC)X=0,1;Y=0,1;p(0/0)=p(1/1)=1-p;p(0/1)=p(1/0)=p;P=010
4、1-pp1p1-p 0 1-p 0 p p 1 1-p 1第8页,本讲稿共53页第一节 信道的数学模型及分类例2 二元删除信道X=0,1;Y=0,2,1P=02101 pp010p1-p 0 1-p 0 pp 1 1-p 12第9页,本讲稿共53页P=y1y2ymx1p(y1/x1)p(y2/x1)p(ym/x1)x2p(y1/x2)p(y2/x2)p(ym/x2)xnp(y1/xn)p(y2/xn)p(ym/xn)由此可见,一般单符号离散信道的传递概率可以用矩阵表示第一节 信道的数学模型及分类第10页,本讲稿共53页第一节 信道的数学模型及分类 为了表述简便,可以写成下面推导几个关系式:第1
5、1页,本讲稿共53页第一节 信道的数学模型及分类(1)联合概率其中称为前向概率,描述信道的噪声特性称为后向概率,有时也把 称为先验概率,把 称为后验概率(2)输出符号的概率(3)后验概率 表明输出端收到任一符号,必定是输入端某一符号输入所致第12页,本讲稿共53页第二节 平均互信息1、信道疑义度 这是收到 后关于X的后验熵,表示收到 后关于输入符号的信息测度 这个条件熵称为信道疑义度,表示输出端在收到一个符号后,对输入符号尚存的不确定性,这是由信道干扰造成的,如果没有干扰,H(X/Y)=0,一般情括下H(X/Y)小于H(X),说明经过信道传输,总能消除一些信源的不确定性,从而获得一些信息。第1
6、3页,本讲稿共53页第二节 平均互信息I(X;Y)=H(X)-H(X/Y)2、平均互信息 因为H(X),表示传输前信源的不确定性,而H(X/Y)表示收到一个符号后,对信源尚存的不确定性,所以二者之差信道传递的信息量。下面我们讨论一下互信息与其他的熵之间的关系I(X;Y)=H(X)-H(X/Y)=H(X)+H(Y)-H(XY)=H(Y)-H(Y/X)(3.34)第14页,本讲稿共53页第二节 平均互信息也可以得到:H(XY)=H(X)+H(Y/X)=H(Y)+H(X/Y)由3.34也可以看出,互信息I(X;Y)也表示输出端H(Y)的不确定性和已知X的条件下关于Y的不确定性之差,也等于发送前后关于
7、Y的不确定性之差。H(X/Y)即信到疑义度,也表示通过有噪信道造成的损失,故也称为损失熵,因此信源的熵等于收到的信息量加上损失的熵;而H(Y/X)表示已知输入的情况下,对输出端还残留的不确定性,这个不确定性是由噪声引起的,故也称之为噪声熵。第15页,本讲稿共53页互信息与各类熵之间的关系可以用下图表示:第二节 平均互信息 H(X,Y)H(X/Y)H(Y/X)H(X)H(Y)I(X,Y)可以看出,联合熵等于两园之和减去第三部分,也等于一个园加上另外一部分 下面讨论两种极端情况:图1第16页,本讲稿共53页第二节 平均互信息(1)无噪一一对应信道 此时可以计算得:H(X/Y)=H(Y/X)=0在图
8、一中表示就是两圆重合。(2)输入输出完全统计独立 此时I(X;Y)=0 H(X/Y)=H(X)H(Y/X)=H(Y)第17页,本讲稿共53页第三节 平均互信息的特性1、平均互信息的非负性I(X;Y)=0 该性质表明,通过一个信道总能传递一些信息,最差的条件下,输入输出完全独立,不传递任何信息,互信息等于0,但决不会失去已知的信息。2、平均互信息的极值性 I(X;Y)=H(X)一般来说,信到疑义度总是大于0,所以互信息总是小于信源的熵,只有当信道是无损信道时,信道疑义度等于0,互信息等于信源的熵。第18页,本讲稿共53页第三节 平均互信息的特性3、平均互信息量的交互性 I(X,Y)=I(Y,X)
9、I(Y;X)表示从X中提取关于的Y的信息量,实际上I(X,Y)和I(Y,X)只是观察者的立足点不同,对信道的输入X和输出Y的总体测度的两种表达形式 4、平均互信息的凸状性第19页,本讲稿共53页第三节 平均互信息的特性 定理定理3.1 平均互信息平均互信息I(X;Y)是信源概率分布是信源概率分布P(X)的的 型凸函数型凸函数 这就是说,对于一定的信道转移概率分布,总可以找到某一个先验概率分布的信源X,使平均交互信息量达到相应的最大值Imax,这时称这个信源为该信道的匹配信源。可以说不同的信道转移概率对应不同的Imax。第20页,本讲稿共53页第三节 平均互信息的特性例:对于二元对称信道 0 1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息论 第三章优秀课件 第三 优秀 课件
限制150内