发育生物学重点说课讲解.doc
《发育生物学重点说课讲解.doc》由会员分享,可在线阅读,更多相关《发育生物学重点说课讲解.doc(90页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Good is good, but better carries it.精益求精,善益求善。发育生物学重点-1后成论Aristotle(公元前384-322年)首先提出了胚胎是由简单到复杂逐渐发育形成的,这个理论后来称为后成论。他是在观察鸡、星鲛和一些无脊椎动物胚胎发育的基础上提出来的。2先成论公元17世纪后期和18世纪,以精源学说和卵源学说为代表精源学说认为胚胎预先存在于精子中。卵源学说则认为卵子中本来就存在微小的胚胎雏形。它们的共同点在于都认为胚胎是成体的雏形,是配子中固有的结构,胚胎发育仅仅是原有结构的增大。Driech(1891)首先证明海胆发育过程中存在调整型发育:胚胎为保证正常的发
2、育,可以产生胚胎细胞位置的移动和重排。嵌合型发育细胞的命运实际上是由卵裂时所获得的合子核信息早已预定的,这一类型的发育我们称为嵌合型发育。诱导是指一类组织与另一类组织的相互作用,前者称为诱导者,后者称为发应组织,诱导者可指令邻近反应组织的发育。海胆:研究受精和早期胚胎发生的模式粘菌:细胞聚集分化与模式形成水螅:再生能力与现代试验生物学萌芽线虫:恒定细胞系示例果蝇:仍然是遗传学和分子发育生物学的国王。爪蟾:脊椎动物发育研究最好的卵子和典型的胚胎斑马鱼:一个崛起者鸟类哺乳动物。1.大多数动物的发育要经历胚胎期、幼体期、变态发育期和成体期2.卵细胞内部是不对称的,即具有极性3.卵裂是一系列迅速的细胞
3、分裂4.原肠作用为构建内部器官做准备5.器官形成和组织分化产生了自主的有机体极体释放的位点通常视为“北极”,又叫做动物极,相应的另一极“南极”叫做植物极“动物”一词指的是典型的动物器官如眼睛或中枢神经系统;“植物”指源于原肠的营养器官,它们执行食物物理等相对“低等”的生理功能动物的卵细胞通常由非细胞套所保护:如卵黄膜、透明带、绒毛膜等。卵细胞的核通常位于细胞外周靠近表面的部分,减数分裂产生卵子的过程中,极体就从这里形成。受精卵(合子)高速分裂,而不伴随体积和物质的增加,细胞的数目越来越多,而个头越来越小。发育的这一时期叫做卵裂。卵裂期结束后形成囊胚。由细胞组成的上皮壁叫做囊胚层,而内部为囊胚腔
4、,其内充满液体或液化的卵黄。海鞘:经经纬经,8次分裂后产生的256细胞柱形胚胎在两极细胞移动封口后成为中空柱形囊胚。螺旋型全卵裂:均采经线裂。第三次分裂前,卵裂球内的纺锤体转动45度,然后向动物极方向出芽小卵裂球。其后的大卵裂球以同样方式产生一大一小子分裂球,而小分裂球只生成小卵裂球。形成的囊胚无囊胚腔。哺乳动物旋转型全卵裂:第1次为经线裂,其后的2个卵裂球各采不同的卵裂方式。早期卵裂球的卵裂不同步,可产生奇数细胞的胚胎。鸟类的盘状偏裂:胚盘为动物极直径约23mm的胞质区,前3次卵裂经线裂,发生在输卵管中,胚盘为单细胞层,仍与卵黄相接触。鱼类的盘状偏裂:斑马鱼受精卵的前5次卵裂均为经线裂,产生
5、的32个细胞为单层分布于卵黄上。其后的分裂方向不规则。囊胚期开始于128细胞期,属盘状囊胚。五种细胞运动机制:(1)分层:一层细胞分裂形成两层或多层相互平行的细胞层(2)内移:胚胎表面细胞单个向内迁移,做阿米巴运动。(3)内陷:一个区域内的细胞同时向内凹入,很像一个皮球被用力一戳之后形成的凹陷。(4)外包:表层细胞(通常指外胚层细胞)整体而不是以单个细胞为单位向外周扩展包绕胚胎深层细胞的细胞运动。(5)极化增殖:细胞在某一极分裂,释放出的子细胞进入胚胎空穴内。胚胎诱导:在机体的发育过程中,一个区域的组织与另一个区域的组织相互作用,引起后一种组织分化方向上变化的过程称为胚胎诱导。在胚胎诱导相互作
6、用的两种组织中产生影响。引起另外的细胞或组织分化方向变化的这部分细胞或组织称为诱导者,而接受影响并改变分化方向的细胞或组织称为反应组织。在动物胚胎发育过程中存在大量的和连续的诱导作用。其中原肠的脊索中胚层诱导其上方的外胚层形成神经系统的诱导作为被称为初级胚胎诱导。初级胚胎诱导的产物神经管(如视杯)又可作为诱导者,诱导表面覆盖的外胚层形成晶状体,这称为次级胚胎诱导,而晶状体和(或)视杯又作为诱导者诱导表面的外胚层形成角膜,此为三级胚胎诱导。海胆:海胆具美丽透明的胚胎。卵和精子可以大量地获取,卵子很小(直径0.1mm),是透明的,包裹在一个透明、易于剥离的膜里。人工授精后,它们完全同步发育,直至孵
7、化出幼虫,这个过程需要12d。发育的起点:卵裂。精子核进入卵内,受精子与卵膜接触刺激,受精膜从卵表面举起,卵子被激活,卵裂开始。海胆以同步、放射状的全裂方式分裂直至囊胚期。128-细胞期以后,细胞周期长短和细胞分裂不再同步。胚胎进入囊胚期。囊胚的细胞壁称为胚盘,其外表面形成了纤毛,在动物极出现第一个幼虫感觉器官:顶簇。在植物极,胚盘变平,加厚形成或植物板。中间腔为囊胚腔。原肠胚约含1000个细胞。原肠形成的开始以小分裂球的子代迁移至中间腔为标志。小分裂球是诱导者,移植到胚盘的另一位点后,小分裂球诱导其相邻细胞内陷。3.1初级间质细胞的内移海胆胚胎大约有64个初级间质细胞,全部来自第4次不对称卵
8、裂所形成的4个小裂球。Gustafson和wolpert曾用定时自动摄影术跟踪囊胚腔内初级间质细胞的研究表明,这些细胞融合形成索状合胞体(syneytialcable),最终形成幼虫碳酸钙骨针的轴。迁移的可能机理:亲和力的降低使得小裂球脱离与之相连的透明层(胚盘外表)及其相邻的细胞,并在基质片层(腔内)的牵拉下进入囊胚腔。其中纤连蛋白,硫酸蛋白多糖,ECM18可能在细胞迁移中起重要作用。海胆原肠作用过程:原植物极中央细胞内陷进入囊胚腔,表皮细胞转变成为初级间质细胞,然后内胚层表皮细胞内陷和扩展,其前端表皮细胞转化为次级间质细胞。两种间质细胞都将长出伪足,后者起定向和驱动细胞移动的作用。海胆原肠
9、作用的机制:内胚层的早期内陷机制:纤丝收缩使细胞变位契形,成为细胞内陷的原动力。内胚层的晚期内陷机制:伪足的收缩和细胞间的变形重排(会聚伸展)。次级间质细胞在原肠顶端形成,并维持在原肠顶端。这些次级间质细胞在内陷的最后阶段对于将原肠牵拉至囊胚腔壁起至关重要的作用。其特定靶位可能位于将来形成的区域。当原肠最顶端接触到囊胚腔壁时,次级间质细胞分散进入囊胚腔。它们在囊胚腔中分裂,最终形成中胚层器官,肌肉细胞及一些其它细胞类型。海胆幼虫称为长腕幼虫,漂浮在水中,利用其纤毛摆动将微型食物漩入口中。从幼虫转化成五聚体海胆需要一个基本的重构过程。新构建从参与胚胎发生但被储存起来的一群细胞成虫盘开始。其过程与
10、“完全蜕变”的昆虫类似。经典实验1:胚胎具调控能力HansPriesch在Naples的StazioneLoologica做了如下具有重大历史性意义的实验:如果提供的胚胎是在原肠形成之前沿动一植物轴切开一分为二,可产生两个大小为正常个体一半的正常幼虫。从8-细胞期开始,在垂直于动-植物极卵轴的赤道板上将胚胎一分为二:动物一半发育成囊胚样的空卵裂球,植物一半能形成原肠,但生成的幼虫无嘴或手臂短。结论:活的生物体不单纯是部机器,因为机器零件不能自动补充自己而修复或一部完整的机器。(因为所有细胞都拥有全套的遗传信息,当沿卵轴切开时,两个半球都接受了动-植物极细胞质成分。另外,实验也表明:细胞质成分负
11、责不同的发育潜能。于是Boveri提出沿着动-植物轴存在等级潜能的想法。经典实验2:相互作用与梯度理论动物化与植物化现象:长纤毛的顶簇没有在小范围内聚集,而是遍布整个囊胚。这种动物半球结构特征被夸大的现象叫做动物化。此现象随着与动物极距离增加而减少。在完整的胚胎中,这个强大的动物化潜力必须得到来自胚胎植物部分影响的低制或弥补。小分裂球是至今最好的植物化物。双梯度模式:即沿动-植物轴的两种生理行为存在镜像梯度。这些行为被归于形态生成物质或称形态生成素,高浓度的Li+能造成植物化至外原肠胚。Li+通过阻断PI-PKC信号传导系统干扰信号交换。海胆小分裂球启动原肠作用,可诱导第二胚轴的形成。粘菌(盘
12、基网柄菌),是一种简单的真核微生物,外形象阿米巴虫,生活在富含有机物的土壤中,吃细菌,通过二分裂方式繁殖,营养期为完全无性生殖。在非正常条件下,如食物耗尽时产生奇妙的有性生殖:大量单个阿米巴集合成一个社会群体,形成虫子蛞蝓,它迁移到一个明亮的地方变成实体,其中孢子为生殖细胞,其形成和释放都是为了执行无性繁殖的功能。聚集的机理:CAMP(引诱的化学信号)由饥饿细胞以每510min的同步化脉冲发射,并在水膜中放射扩散。此信号被细胞表面受体蛋白检测到。此受体与PI信号传导系统的通路偶联。相邻的阿米巴在表面受体受到信号后,以释放自身的CAMP作为应答,细胞一个连一个形成“溪流”,最后聚集于中心,细胞数
13、量可达100000个。细胞分化与模式形成:化学和物理条件决定细胞分化的方式和特异性细胞类型产生的位置。(1)位置信息假说:细胞在蛞蝓中的位置决定它的命运。(2)分类假说:细胞在聚集前就已分化,并根据其未来的作用寻找位置。许多事实趋向于杂合学说,即将位置信息和分类假说合并为一体的假说。化学条件:小分子量信号物质在数量控制细胞分化和条件细胞类型中起关键作用;在蛞蝓顶端存在高浓度的CAMP和分化诱导因子(DIF),但低浓度氨(NH3)的条件时,细胞注定成为基细胞。粘菌已成为研究信号周期发射,信号中转、趋化性和细胞通过粘附分子建立接触的模式动物。粘菌在由单细胞变形体形成的蛞蝓形假原生质团并进一步分化成
14、为柄和孢子的过程,涉及一系列特异基因的表达,是研究低等生物体细胞分化很好的材料。然而与多细胞有机体细胞分化的不同之处是:前者为适应不同的生活环境,而后者则通过细胞分化构建执行不同的组织与器官。多细胞有机体在其分化程序与调节机制方面更为复杂。水螅是腔肠动物门的一员,这个最简单的多细胞生物体有典型的动物细胞如感觉、神经和上皮肌肉细胞。水螅能通过永生的干细胞产生替代肠腔,是至今还没有发现肿瘤或别的癌畸变动物,这说明这些动物有一个非常有效的增生控制系统。水螅纲(Hydrozoa)螅形目(Hydroida),水螅属(Hydra)动物。水螅有性生殖的发生是对生活条件变化的反应。如水温、光照、pH值、水中氧
15、和二氧化碳的含量以及食物等的变化,都对水螅的有性生殖产生影响.线虫:主要优点1.易于养殖:成虫体长1mm,易冷冻保存;2.性成熟短:2.5-3天,两种成虫;3.细胞数量少,谱系清楚;4.易于诱变;5.基因组序列已全部测出(Science,Dec.11,1998)。线虫被证明是研究真核生物发育、遗传、细胞生物学、神经生物学和基因组织结构的一个极好材料。特点是:身体透明、遗传操作容易,特别是它的每一个体或繁殖的每一代的细胞谱系的高度精确性。线虫的自然生长环境是土壤,象粘菌一样食细菌。胚胎发生持续约12h(25)或18h(16)。出生之后,线虫的发育还将继续,从形态上,还需要经过3次蜕皮,从细胞数量
16、上,一些器官的细胞还要继续分裂,比如,肠细胞还需要多来14个才够,而表皮细胞也还需要继续分裂直到数量达到213个。在这个数量继续增长的时期,细胞最多时达到1090(雌雄同体,若是雄虫则为1179)线虫通常是两性的,有xx性染色体,外形和解剖学上看是雌性,但它不但能产卵,其管状生殖腺还能产生精子。自体受精导致近亲繁殖,反复杂交的结果,突变基因(新等位基因)在F2代就成为纯合基因。由于不分离,x染色体偶尔丢失会产生0.2%的xo雄性体。XO雄性体与两性体交配,两性体交配扮演真正的雌性。因此,在线虫,交叉受精和自体受精是可能的。在交叉受精中,新等位基因可以被引入。追踪细胞命运图谱的方法:在胚胎中注入
17、永久标志物和荧光染料,标记抗体或报导基因,有些细胞系有自然分化标记物。用一束激光束可消除定义的细胞(手术除去创立者细胞)。细胞谱系产生的原因:每个细胞的命运不仅由早期胚胎发生时分配的细胞成分(如RNA)决定(细胞分裂不对称所致),很大程度上也取决于相邻细胞间早期精确的相互作用。如在生殖系P0至P4的细胞赋有一种特殊传代物的特征:不对称细胞分裂把细胞质P颗粒(Pgranules)只分配到生殖细胞中,而不分配到注定要成为体细胞的姐妹细胞中。在动物界里,螺旋或斜向卵裂在若干类群中发生:无腔的涡虫纲、纽形动物、环形动物和软体动物(乌贼除外)。这几个种系的动物被称为螺旋动物。通常它们的胚胎发育经过一个典
18、型的囊胚和原肠胚,终止于担轮幼虫或类似担轮幼虫如面盘幼虫。果蝇的生命周期快,繁殖容易和可进行基因定位研究的巨大的多线染色体等特性使它最适合用于遗传分析。然而,只是在1978年E.B.Lewis引入同源基因复合物之后,果蝇才成为发育生物学最重要的模式材料。果蝇的胚胎发生只需1d;幼虫经历三个阶段,到第四天蜕皮分离,然后蛹化。在蛹中,它经过历时5d的变态。成年果蝇存活约9d果蝇卵子发生:卵原细胞4次有丝分裂16细胞的合胞体其中一个为卵母细胞(occyte)(2n1n),其余15个成为滋养细胞(多倍体)滋养细胞:基因组的扩增使其具高转录活性,它们将供给卵母细胞大量的核糖体和RNP颗粒(mRNA+Pr
19、otein),它们由滋养细胞排出并经合并运输进入卵母细胞。滤泡细胞:邦助营养卵母细胞,介导卵黄的供给。卵母细胞只是一个消费者,它自身的细胞核并不具转录活性。母源滋养细胞,滤泡细胞和脂肪体细胞利用自身的基因和细胞资源制造所有输入卵母细胞的物质。当然这些基因产物影响卵子胚胎发育时,它们被称为母源基因影响。高速的胚胎发生:卵裂:表面卵裂细胞核高频率复制256个核合胞体,核移至卵外周,定居皮层合胞体胚盘期(6000个核)细胞质膜沿核内陷,产生细胞细胞胚盘期。还有一些核留在中心卵黄内,或为消黄细胞(Vitellophages)。在正常卵的后极,移入的核和极颗粒,含包括mtRNA在内的几种RNA)被细胞膜
20、包裹并通过出芽的方式排出,它们为原始生殖细胞。在原肠形成时,极细胞迁移,穿过中肠上皮到达胚胎生殖腺原肠形成和早期胚胎发生:原肠作用开始于腹部预置中胚层的内陷。内胚层形成:由前部和后部中肠内陷,最后融合形成中肠。中胚层和腹神经的形成:腹侧细胞带腹沟(原沟)带状中胚层肌肉系统两侧神经生成细胞腹神经索脑:囊胚层局部加厚,内陷,分层为成神经细胞,参与了脑的构建。背部闭合:外胚层的背部边缘和内部器官的边缘朝背部卵黄中心生长直至彼此相遇并沿背中线融合。控制胚胎模式形成的主导基因时间表达顺序母源性基因缝隙(缺口基因)成对控制基因、体节极性基因同源异型基因前端组织中心:BICOID(BCD)蛋白浓度梯度bcd
21、mRNA在滋养细胞中转录并转运至卵细胞中,定位于卵子预定胚胎的前端(其3末端非翻译区中具有与其定位有关的序列)。受精后bcdmRNA迅速翻译,BCD蛋白在前端积累并向后端弥散,形成从前向后稳定的浓度梯度。BCD蛋白是一种转录调节因子,缝隙基因hunchback(hb)是其靶基因之一。hb是控制胚胎胸部及头部部分结构发育的重要基因,只有BCD蛋白浓度达到一定临界值才能启动hb基因的转录(在合胞体胚盘阶段开始翻译)。后端组织中心:NANOS蛋白和CAUDAL蛋白浓度梯度。后端系统的mRNA产物不能直接调节合子基因的表达,而是通过抑制一种转录因子的翻译来进行调节。nanosmRNA定位于后端,NAN
22、OS蛋白从卵的后部扩散,形成与BICOID蛋白梯度方向相反的浓度梯度。在HB蛋白开始合成时,分布在胚胎后部的hbmRNA的翻译被NANOS的浓度梯度所抑制(翻译水平上抑制),而在前部BCD蛋白浓度梯度,可以激活hb基因的表达。结果HB蛋白的分布区域主要只位于胚胎前半部分。Caudal(cdl)mRNA最初也是均匀分布于整个卵质内,BCD能抑制cdlmRNA的翻译。在BCD活性从前到后降低的浓度梯度作用下,形成CDL蛋白从后到前降低的浓度梯度。cdl基因突变导致腹部体节发育不正常。未端系统:TORSO信号途径T0R蛋白为一种跨膜酪氨酸激酶受体RTK在整个合胞体胚胎的表面表达。被配体结合后,经一系
23、列信号传递,最终激活合子的靶基因的表达:如缝隙基因huckebein(hkb)和tailless(tll)在末端区的表达。果蝇背一腹轴的形成:dorsal(dl)mRNA和DL蛋白在卵子中均匀分布。当胚胎到第9次细胞核分裂之后,细胞核迁移到合胞体胚盘的外周皮质层,在胚胎腹侧DL蛋白开始往核内聚集,但在背侧DL蛋白仍位于胞质中,从而使DL蛋白在细胞核内的分布沿背一腹轴形成一种浓度梯度。分节基因与胚胎体节的形成:分节基因的功能是把早期胚胎沿前一后轴分为一系列重复的体节原基。首先由母体效应基因控制缝隙基因的活化,其次,缝隙基因之间互相调节彼此的转录且共同调节成对控制基因的表达,然后成对控制基因之间相
24、互作用,把胚体分隔成为一系列重复的体节,并且进一步控制体节极性基因的表达。缝隙基因和成对控制基因再共同调控同源异型基因的表达。影响体节一致性的基因:同源异型基因同源异型基因最终决定身体体节将出现那一种特异类型。果蝇大部分同源异型基因都位于第3号染色体相邻的两个区域,其中一区域称为触角足复合体,另一个区域是双胸复合体(Bx-c),这两个复合体统称同源异形复合体(HOM-C)。HOM-C是由8个基因构成2个基因簇。还有一个同源异型基因caudal在HOM-C区之外。果蝇的同源异型框基因bicoid,zen,ftz虽然都位于Hom-c区内,但bicoid,zen是母体效应基因,ftz是分节基因,都不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 发育 生物学 重点 讲解
限制150内