应用回归分析第九章部分答案知识讲解.doc
《应用回归分析第九章部分答案知识讲解.doc》由会员分享,可在线阅读,更多相关《应用回归分析第九章部分答案知识讲解.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Good is good, but better carries it.精益求精,善益求善。应用回归分析第九章部分答案-第9章非线性回归9.1在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式,还要注意误差项的形式。如:(1) 乘性误差项,模型形式为,(2) 加性误差项,模型形式为。对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。9.2为了研究生产率与废料率之间的关系,记录了如表9.14
2、所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。表9.14生产率x(单位/周)1000200030003500400045005000废品率y(%)5.26.56.88.110.210.313.0解:先画出散点图如下图:从散点图大致可以判断出x和y之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。(1)二次曲线SPSS输出结果如下:从上表可以得到回归方程为:由x的系数检验P值大于0.05,得到x的系数未通过显著性检验。由x2的系数检验P值小于0.05,得到x2的系数通过了显著性检验。(2)指数曲线从上表可以得到回归方程为:由参数检验P值00.05,得到回归方程的参
3、数都非常显著。从R2值,的估计值和模型检验统计量F值、t值及拟合图综合考虑,指数拟合效果更好一些。9.3已知变量x与y的样本数据如表9.15,画出散点图,试用e/x来拟合回归模型,假设:(1) 乘性误差项,模型形式为y=e/xe(2) 加性误差项,模型形式为y=e/x+。表9.15序号xy序号xy序号xy14.200.08663.200.150112.200.35024.060.09073.000.170122.000.44033.800.10082.800.190131.800.62043.600.12092.600.220141.600.94053.400.130102.400.24015
4、1.401.620(1) 解:散点图:乘性误差项,模型形式为y=e/xe线性化:lny=ln+/x+令y1=lny,a=ln,x1=1/x.做y1与x1的线性回归,SPSS输出结果如下:从以上结果可以得到回归方程为:y1=-3.856+6.08x1F检验和t检验的P值00,0b10.994,得到回归效果比线性拟合要好,且:,回归方程为:。最后看拟合效果,由sequence画图:得到回归效果很好,而且较优于线性回归。9.5表9.17(书上233页,此处略)数据中GDP和投资额K都是用定基居民消费价格指数(CPI)缩减后的,以1978年的价格指数为100。(1) 用线性化乘性误差项模型拟合C-D生
5、产函数;(2) 用非线性最小二乘拟合加性误差项模型的C-D生产函数;(3) 对线性化检验自相关,如果存在自相关则用自回归方法改进;对线性化检验多重共线性,如果存在多重共线性则用岭回归方法改进;解:(1)对乘法误差项模型可通过两边取对数转化成线性模型。lny=lnA+ alnK+ b lnL令y=lny,0=lnA,x1=lnK,x2=lnL,则转化为线性回归方程:y=0+ ax1+ b x2+ eSPSS输出结果如下:模型综述表从模型综述表中可以看到,调整后的为0.993,说明C-D生产函数拟合效果很好,也说明GDP的增长是一个指数模型。方差分析表从方差分析表中可以看到,F值很大,P值为零,说
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用 回归 分析 第九 部分 答案 知识 讲解
限制150内