30米预应力简支箱形梁桥结构设计(迈达斯计算)(共130页).docx
《30米预应力简支箱形梁桥结构设计(迈达斯计算)(共130页).docx》由会员分享,可在线阅读,更多相关《30米预应力简支箱形梁桥结构设计(迈达斯计算)(共130页).docx(131页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 本科毕业设计题 目: 30m预应力简支箱形梁桥 结构设计 学 院: 土木工程学院 专 业: 土木工程(交通土建工程) 班 级: 1111班 学 号: 1vnvn 学生姓名: hgjfgfh 指导教师: 李建vn 职称: 讲师 二一四年 四月 三十日30m预应力混凝土简支箱梁计算书摘 要预应力混凝土简支箱梁桥以结构受力性能好、变形小、行车平顺舒适、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。预应力混凝土简支梁桥是一种预先储存了足够预加应力的新型梁桥,预加应力可大幅度提高梁体的抗裂性,并增加了梁的耐久性,截面尺寸减小,高跨比减小,受力明确,理论计算较简单
2、,设计和施工的方法日趋完善和成熟。简支箱形截面梁具有优良的力学特性:较大的刚度和强大的抗扭性能、结构简单、受力明确、节省材料、架设安装方便,跨越能力较大、桥下视觉效果好,因而被广泛地应用于城市桥梁和高等级公路立交桥的上部结构中。本次设计的主要内容是关于预应力简支箱形梁桥的结构设计。设计跨度是30m,双向四车道,桥面宽度15m(0.5m防撞墙+4×3.5m行车道+0.5m防撞墙),采用单箱双室箱形截面,桥轴线为直线,荷载等级:公路I级汽车荷载,地震设防烈度:7级。梁高采用变高度梁,因梁桥在支点处截面的剪力过大,故在梁桥支点处选择变截面过渡,按一次曲线变化。设计主要进行了桥梁总体布置及结
3、构尺寸拟定、桥梁荷载内力计算、桥梁预应力钢束的估算与布置、桥梁预应力损失及应力的验算、内力组合验算、主梁截面应力验算。利用软件Midas Civil 进行结构分析,根据桥梁的尺寸拟定建立桥梁基本模型,然后进行内力分析,计算配筋结果,进行施工各阶段分析及截面验算。关键词:预应力混凝土、简支、箱梁、结构分析、内力验算30m prestressed concrete box girder calculationsBecause of the long-span pre-stressed concrete continuous box Girder Bridge have many advantage
4、s such as its big span ability, flexible construction methods, adaptability, structural rigidity, anti-seismic capability, Structure stress performance good, small deformation, less expansion joints, driving smooth and comfortable, beautiful forms, small maintenance quantity and etc a,it become the
5、most competitive one of the main bridge ,and it becomes more and more widely used in China.This graduate design is mainly about the design of the superstructure of the road pre-stressed concrete Charpy Bridge. The span of the bridge is 30m. This design is a continuous bridge which has four lanes. Th
6、e bridge deck is made of C50 water-protected concrete. It consists of 3.5m (the width of road deck) ×4 + 0.5m (the width of the sidewalk) ×2=15m; The axis of this bridge is a straight line, The design load standard is the Road One-Level Load,Seismic fortification intensity 7. And the heigh
7、t of girder is changing in the form of conic.The design of pre-stressed concrete continuous girder bridge is mainly the upper structure design , in the design of the main bridge layout and structure size, load calculation, bridge pre-stressing tendons estimation and layout ,the loss of pre-stress an
8、d stress of the bridge, the resultant checked, internal combination calculation, section stress calculation girder. This design using the Midas software analysis the structure, according to the size of the bridge, the basic model establishment bridge worked, then force analysis, calculation results
9、of reinforced, for each phase analysis and construction. At the same time, consider the concrete shrinkage, Creep force times and temperature resultant times factors. Key word: Pre-stressed Concrete; Simple Support; Box girder; Structural Analysis; Checking the internal forces目 录第一章 绪论11.1概述11.2预应力梁
10、桥受力特点11.3预应力混凝土梁桥发展综述2 1.3.1国外预应力混凝土梁桥的发展2 1.3.2国内预应力混凝土梁桥的发展31.4我国高速公路桥梁的发展4 1.4.1公路桥梁发展现状5 1.4.2我国高速公路桥梁建设特点51.5桥梁设计的基本原则61.6预应力混凝土简支梁桥的特点71.7预应力混凝土梁桥施工技术81.8毕业设计主要内容81.9毕业设计的目的和意义9第二章 设计要点及构造、材料、尺寸的拟定102.1桥梁选取的基本原则102.2设计的基本资料102.3箱形截面桥梁的特点102.4主要技术标准112.5主要材料及材料性能112.6设计参数取值112.7结构概述13 2.7.1截面形式
11、及截面尺寸拟定132.8计算原则及控制标准15第三章 结构有限元模型的建造过程163.1 Midas Civil软件介绍163.2模型建立过程173.2.1设定建模环境17 3.2.2设置结构类型18 3.2.3定义材料和截面特性值19 3.2.4建立结构有限元模型21 3.2.5定义边界条件23 3.2.6定义荷载233.2.7定义施工阶段293.2.8汽车荷载29每四章 主梁作用效应计算324.1作用分类324.2公路预应力钢筋混凝土(psc)桥梁设计设计验算内容34 4.2.1施工阶段法向压应力验算34 4.2.2受拉区钢筋的接应力验算41 4.2.3使用阶段正截面抗裂验算43 4.2.
12、4使用阶段斜截面抗裂验算50 4.2.5使用阶段正截面压应力验算55 4.2.6使用阶段斜截面主压应力验算60 4.2.7使用阶段正截面抗弯验算65 4.2.8使用阶段斜截面抗剪验算71 4.2.9使用阶段抗扭验算78结论89致谢90参考文献91专心-专注-专业第一章 绪论 1.1概述我在进行毕业设计之前,先阅读了各种文献,对桥梁的历史和发展有一个初步的了解,同时也要对桥梁结构的各种形式有系统的了解,以便今后对毕业设计有更好的把握。由于普通钢筋混凝土结构存在不少缺点:如过早地出现裂缝,使其不能有效地采用高强度材料,结构自重必然大,从而使其跨越能力差,并且使得材料利用率低。为了解决这些问题,预应
13、力混凝土结构应运而生,所谓预应力混凝土结构,就是在结构承担荷载之前,预先对混凝土施加压力。这样就可以抵消外荷载作用下混凝土产生的拉应力。自预应力结构产生之后,很多普通钢筋混凝土结构被预应力结构所代替。预应力混凝土桥梁是在二战前后发展起来的,当时西欧很多国家在战后缺钢的情况下,为节省钢材,各国开始竞相采用预应力结构代替部分的钢结构以尽快修复战争带来的创伤。50年代,预应力混凝土桥梁跨径开始突破了100米,到80年代则达到440米。虽然跨径太大时并不总是用预应力结构比其它结构好,但是,在实际工程中,跨径小于400米时,预应力混凝土梁桥常常为优胜方案。1.2预应力混凝土简支梁桥的受力特点:预应力混凝
14、土简支梁桥,它具有简支梁桥和预应力混凝土桥的一般优点。预加应力可大幅度提高梁体的抗裂性,并增加了梁的耐久性;预应力混凝土梁桥的主要不同之处是截面尺寸减小,高跨比减小;受力明确,理论计算较简单,设计和施工的方法日趋完善和成熟。简支箱形截面梁具有优良的力学特性:较大的刚度和强大的抗扭性能、结构简单、受力明确、节省材料、架设安装方便,跨越能力较大、桥下视觉效果好;而被广泛地应用于城市桥梁和高等级公路立交桥的上部结构中。预应力混凝土简支箱型梁桥一般只用在跨线桥上,相较于其他梁桥较少,箱形梁同时也具有造价高,自重大,抗风性较差等缺点。1.3预应力混凝土梁桥发展综述1.3.1国外预应力混凝土梁桥的发展 预
15、应力混凝土桥梁的发展在第二次世界大战以前尚处在萌芽阶段,但正在逐步向成熟阶段过渡。第二次世界大战以后,联邦德国、法国等西欧国家因遭受战争破坏,大量桥梁急待修复,而当时战后钢材奇缺,客观上为预应力混凝土桥和预应力锚具的发展提供了非常有利的环境。而在非洲、拉丁美洲一些第三世界国家亦为避免从国外输入昂贵的钢材,也常优先考虑预应力混凝土桥梁方案。应力混凝土桥梁一旦跃上桥梁建设的历史舞台,就显示出它强大的竞争能力,从50年代创建了突破loom的跨径记录,经过三十余年的迅猛发展,至今已创建了440m的跨径记录。口前,在规划中的设计方案有突破500m跨径记录的趋势。而在实际的工程实践中,在400M以下的跨径
16、范围内,预应力混凝土桥梁已常为优胜的方案。在三十余年的高速发展阶段,几座典型桥例是非常值得一提的。1953年联邦德国建成的胡尔姆斯(Worms)桥,主跨114.2m,它标志着钢桥传统的施工方法悬臂拼装方法在预应力混凝土桥上创造性的应用,即悬臂浇筑法,从而发展了预应力混凝土结构的一种新体系-T型刚构。1964年联邦德国又建成了主跨为208m的本道尔(Bendorf)桥,再一次成功地显示出悬臂施工方法的优越性,并且在结构体系上又有了创新,薄型的胜墩与上部连续梁固结,形成带铰的连续一刚构体系。1962年在委内瑞拉建成的马拉开波( Maracaibo)桥,桥全长8272m,其中主桥为斜拉桥,跨径为16
17、0 + 5 x 235 + 160m。它标志着预应力混凝土对新型结构体系的强有力的适应性。斜拉桥体系首创于钢结构,尔后,预应力混凝土结构相继应用,70年代以后,成为大跨径预应力混凝土桥梁的主要桥型之一,并接近世界大跨径钢斜拉桥的记录。预应力混凝土桥梁的发展不但在跨径记录上一再突破,而且在结构体系上“百花争艳”,充分体现了可塑性复合建筑材料的优越性。预应力混凝土桥梁的高速发展不单是取决于材料与预应力技术的先进水平,设计理论的日益完善和计算机技术的发展,作为桥梁方案的竞争能力,更取决于现代化施工技术水平的捉高、桥梁造价的降低。据欧洲地区各国的统计,混凝土结构的造价,其中劳动力费用占38%,材料占4
18、6%,设备占9%,运输占7%,其中劳动力与材料两项占了总造价的84%。从1960年至1970年的统计数字,国外劳动力价格的提高是材料价格提高的2.5倍。因而,现代化先进的施工方法不断发展,建立了一系列应用预应力技术的新型桥梁施工架设方法。从1953年悬臂浇筑法(Cast-in-Site Cantilever Method)成功间世以来,1960年提出了逐孔架设法(Span by span),1962年又发展了顶推法(Incremental Launching Method),同年在悬锗浇筑法不断完善的基础上又发展了悬臂预制拼装法(Precast Segmental Cantilever Met
19、hod)。至70年代。这些方法在具体桥梁工程的应用上各国又有不断的革新。近年来,预应力混凝土桥有两座典型新结构值得一提。一座是瑞士的甘特(Canter)桥,总长678m,平面上双向曲线布置,跨越深谷,墩高124.5m,主跨为174m。在结构型式上貌似斜拉桥,又似连续一刚构,是组合体系。另一座是1983年建成的科威特巴比延(Bubiyan)桥,总长达2503.05M,由12组5跨或6跨连续梁组成,主跨为53.8m,用逐孔拼装法架设,最快的速度是约24小时拼装一孔。结构型式为空间构架(Space Frame),由预制构件和工厂浇制顶、底板连成一个拼装单元。拼装时用的导粱为斜拉钢结构。世界第一座用熟
20、铁铆接的箱形梁桥。又称不列颠箱管桥。位于英国威尔士切斯特至霍利里德铁路跨越梅奈海峡的双线铁路上。建于18461850年。4跨连续,分跨为 70 140 14070米。单孔箱梁重1285 吨,在工地预制组装后用趸船运至桥,用千斤顶提升就位,列车在箱形梁内穿行。1970年5月2325 日的火灾,使桥遭到严重破坏,主跨下垂不能通行。在修复中,河中两跨改为钢桁架拱,边跨改为钢筋混凝土刚架支承的钢梁。1973年竣工后又敷设公路桥面,称布列坦尼亚新桥。公路、铁路两用。1.3.2国内预应力混凝土梁桥的发展我国的预应力混凝土结构起步晚,但近年来得到了飞速发展。现在,我国已经有了简支梁、带铰或带挂梁的T构、连续
21、梁、桁架拱、桁架梁和斜拉桥等预应力混凝土结构体系。虽然预应力混凝土桥梁的发展还不到80年。但是,在桥梁结构中,随着预应力理论的不断成熟和实践的不断发展,预应力混凝土桥梁结构的运用必将越来越广泛。我国自1956年建成第一座跨径20m的预应力混凝土梁桥后,在1970年河南省建成了跨径52m的鱼腹形预应力混凝土简支梁桥,1988年浙江省建成了跨度为62m国内跨度最大的预应力混凝土简支梁桥飞云江桥。近几年来,公路简支梁桥大量应用跨径为4050m的箱形梁或T形梁。预应力混凝土梁桥在我国展现了强大的生命力。桥梁的发展大致经历了以下三次飞跃。19世纪钢材的出现,随后又出现高强度钢材,使桥梁工程的发展获得了第
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 30 预应力 简支箱形梁桥 结构设计 迈达斯 计算 130
限制150内