吉林大学硕士研究生入学考试数学分析高等代数试题上课讲义.doc
《吉林大学硕士研究生入学考试数学分析高等代数试题上课讲义.doc》由会员分享,可在线阅读,更多相关《吉林大学硕士研究生入学考试数学分析高等代数试题上课讲义.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Good is good, but better carries it.精益求精,善益求善。吉林大学硕士研究生入学考试数学分析高等代数试题-吉林大学2006年攻读硕士学位研究生入学考试试题数学分析卷一、(共30分)判断题1、若函数在上可积,则在也可积;2、若级数收敛,则级数也收敛;3、任何单调数列必有极限;4、数列的上、下极限都存在;5、区间上的连续函数必能达到最小值;6、在整个实轴上是一致连续的;7、若函数沿着任何过原点的直线连续,则在连续;8、若函数在点取极小值,则;9、若,则在点取极大值;10、向量场是无源场。二、(共20分)填空题1、设,则grad;2、设,则div;3、设,则rot;
2、4、设s表示单位球面,则第一型曲面积分;5、数列的下极限为;三、(共20分)计算下列极限1、;2、;3、;4、。四、(共20分)判断下列级数的敛散性1、;2、,其中五、(10分)设函数在两次连续可微,满足且。证明:存在使得。六、(10分)计算第二型曲线积分其中为单位圆周,方向为顺时针方向。七、(10分)证明,对任意,都有八、(10分)设均为常数,且对任意都有证明:九、(10分)证明,不存在上的正的可微函数,满足十、(10分)试构造区间上的函数序列,具有如下性质:(1)对每个n,是上的正的连续函数;(2)对每个固定的,;(3)高等代数与空间解析几何卷一、(共32分)填空1、平面上的四个点在同一个
3、圆上的充要条件为。(要求用含有的等式表示);2、设方阵只与自己相似,则必为;3、设为可逆矩阵,则直线与直线的位置关系为。(要求填写相交、平行、重合、异面四者之一);4、设为四阶正方矩阵,其中均为四维列向量;,且线性无关。求线性方程组的通解;二、(16分)求二次曲面的主方向;三、(17分)设为n维欧式空间,与为中向量,线性无关,且对任意的均有。证明,必有上的正交变换,使得四、(17分)设为数域上的n维向量空间,均为上的线性变换,且满足。证明:五、(17分)设为实对称矩阵,证明,必有实对称矩阵,使得为正定矩阵。六、(17分)设为数域上的2n维向量空间,为上的线性变换,且。证明,存在的一个适当基底及
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 吉林大学 硕士研究生 入学考试 数学分析 高等 代数 试题 上课 讲义
限制150内