噬菌蛭弧菌分子生物学特性的研究教学文稿.doc
《噬菌蛭弧菌分子生物学特性的研究教学文稿.doc》由会员分享,可在线阅读,更多相关《噬菌蛭弧菌分子生物学特性的研究教学文稿.doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Good is good, but better carries it.精益求精,善益求善。噬菌蛭弧菌分子生物学特性的研究-噬菌蛭弧菌分子生物学特性的研究中国医学细菌中心弧菌噬菌体研究室秦生巨一、前言噬菌蛭弧菌(Bdellovibriobacteriovorus,以下简称蛭弧菌)是60年代中期Stolp等1发现的一类细菌寄生菌。它比通常的细菌要小,有似细菌病毒(噬菌体)的作用,但不是病毒,具有细菌的特性。“寄生”和“裂解(溶菌)”宿主细菌是蛭弧菌独特的生物学特性。这一生物学特性引起了人们极大的兴趣和关注。20多年来,美国、苏联、日本、法国、以色列、印度等30多个国家和地区的许多实验室对这类菌进
2、行了研究。1982年,秦生巨等在我国首次发现并及时报道了对蛭弧菌的研究。自从蛭弧菌发现以来,国内外许多研究人员对蛭弧菌的生物学、生态学、生理学、分类学、生物化学、分子生物学及其与生物间的拮抗作用进行了研究。特别是70年代后期,对蛭弧菌分子生物学方面的研究更为广泛和细致,发现蛭弧菌在分子生物学方面亦具有许多独特的特性:蛭弧菌不能利用碳水化合物,但分解蛋白质的能力极强,它是利用多肽及氨基酸作为能源和碳源的;蛭弧菌生长代谢过程中乙醛酸循环不明显,以不完全的三羧酸循环为主要代谢途径;蛭弧菌蛋白质含量极为丰富,可达干重的60%65%,DNA含量为5%,含有典型的嘌呤和嘧啶;蛭弧菌DNA合成的前体物质,全
3、部来自宿主菌细胞,大约70%来源于宿主DNA,30%来源于RNA;蛭弧菌可直接利用单核苷酸作前体物质,合成其核酸;蛭弧菌ATP(每消耗1gATP所得细胞千重)值高达20%30%;蛭弧菌在吸附、侵染、穿入等的整个生命周期中,需要多种酶类的参加;蛭弧菌的鞭毛,粗且带鞘,早期有人认为,鞭毛鞘是由细胞壁外膜组成,对尿素十分敏感。近年来,许多实验室对蛭弧菌的噬菌特性以及利用蛭弧菌清除自然环境河水中的某些肠道致病菌方面,做了许多卓有成效的探索工作。目前已证实,蛭弧菌对沙门菌属、志贺菌属、埃希菌属、假单胞菌属、欧文菌属、变形杆菌属、弧菌属等均有很高的裂解活性,特别是对沙门菌属和志贺菌属。进一步研究发现,蛭弧
4、菌对自然河水中的ElTor霍乱弧菌、不凝集弧菌、伤寒沙门菌、大肠杆菌、细菌总数、浮游球衣菌、大肠菌群等均有显著的净化作用。本文就蛭弧菌的形态结构、化学组分、能量代谢、生命周期以及蛭弧菌生物拮抗作用等方面的研究阐述如下。二、蛭弧菌的形态(一)一般形态蛭弧菌革兰染色,于普通光学显微镜下呈阴性弧、杆菌。相差显微镜下,可见到蛭弧菌积极追捕宿主呈跳跃式的运动。电子显微镜观察、蛭弧菌以弧、杆状为主(图1)。其菌体长约为0.81.2m,宽约为0.250.40m。菌体一端附着一根端生鞭毛,极少数有23根。蛭弧菌的鞭毛比其它细菌鞭毛为粗,直径约为2128nm,长一般为菌体的1040倍,通常呈波状。靠近菌体的最初
5、3个“波段”的“波长”递减,远端“波段”的“波长”相当稳定。这种结构与其侵袭功能直接相关,并被认为是蛭弧菌的又一特征。Shilo等发现,与蛭弧菌鞭毛相对的菌体另一端(头部)有钉状的纤毛结构存在,通常23根,最多可有6根,纤毛直径为4.510nm,长为0.81.5m,呈直线形或三角弯曲状。图(1)蛭弧菌Bd39电镜照片蛭弧菌的形状结构,不同菌株各有差异。而且培养基的选择及培养条件许多因素均可影响蛭弧菌形态特征的发育。(二)超微结构蛭弧菌细胞壁通常有内外两层组成,内层覆于细胞膜,其上有数个分散的颗粒,直径约为610nm。蛭弧菌胞浆中常可观察到致密小体,长约150300nm,宽约70120nm,呈片
6、状结构,据推测这可能是细胞膜内陷而形成的。核区非常明显,周围包绕着数个核糖体颗粒。在蛭弧菌的菌体中还可见到间体及其他许多内含物,有人认为间体的存在与蛭弧菌附着宿主有关。当蛭弧菌在深红红螺菌中生长发育时,常见形成异形结构的“孢囊体”,长约为1.2m,宽约为0.6m,孢囊体外壁和内膜都很厚,外壁可厚达3040nm。蛭弧菌的鞭毛结构是独特的,它由鞭毛鞘和轴心组成,鞘壁厚约7.5nm,轴心直径约13nm。Abram等3早期认为,蛭弧菌的鞭毛鞘是由细胞壁外膜延伸而组成的,但是当6mol/L尿素存在时,鞭毛鞘极易被溶解破坏,而细胞壁不受影响。推测组成鞭毛鞘的物质可能对尿素比较敏感,使鞭毛鞘肿胀,直至破裂。
7、有人认为,蛭弧菌鞭毛的结构与其他革兰阴性细菌的鞭毛结构基本相似,但至今尚未发现蛭弧菌鞭毛基部有类似于其他革兰阴性菌鞭毛基部所具有的L环结构(图3)。图3蛭弧菌鞭毛基部L环结构模式蛭弧菌的纤毛基部起源于细胞膜,有612个环状结构,有的分散,有的成簇集结在一起。有人称这一结构为“感染锥子”或“吸附器(固着器)”。这一结构的存在,与蛭弧菌的寄生特性有关,对蛭弧菌进入宿主细胞时机械性钻孔也有积极作用。三、蛭弧菌的化学组成蛭弧菌具有典形的革兰阴性细胞的化学组分。在这之前,曾有人误认为蛭弧菌细胞中不存在肽聚糖。Tinelli等研究报道,蛭弧菌和其他革兰阴性细胞一样,含有典型的肽聚糖成分,并测得蛭弧菌的肽聚
8、糖成分由胞壁酸、葡萄糖胺及其他13种氨基酸组成,同其他原核细胞壁肽聚糖组分和结构类似,其甘氨酸:谷氨酸二异丙基氟磷酸:胞壁酸:谷氨酰肽比例为2:1:1:1:1。在腐生的蛭弧菌中分离到核糖及rRNA,Bd6-5-S在蛀螺菌中繁殖,则可产生含有氨基糖和可溶性胞壁酸的亚微粒子。Murray报到,锌离子对蛭弧菌细胞壁及细胞膜结构的稳定性很重要,在缺乏锌离子的情况下,细胞壁将会变得十分疏松。蛭弧菌细胞膜的研究发现,其甘油磷脂成分主要是由磷脂酸乙醇胺和磷脂酰甘油组成,他们中主要成分为15碳支链脂肪酸。外膜中的类脂A是利用宿主细胞的类脂A,并经过一定的修饰,插入自身细胞的脂多糖结构而形成。脂多糖主要是由葡萄
9、糖、宕藻聚糖、十九烷酸组成。此外,还含有一些其他脂肪酸、戊糖、酮脱氧锌酸及磷脂。在蛭弧菌外膜中存在类OmpF蛋白。蛭弧菌的蛋白质含量丰富,可达细胞干重的60%65%,DNA的含量为5%,含有典型的嘌呤和嘧啶,DNA的G+C比例,大多数菌株为50.20.8%50.80.9%,兼性寄生蛭弧菌DNA的G+C比例较低,为42.71.0%42.80.9%。以蛭弧菌Bd109为例,蛭弧菌中主要大分子物质的比例见表1。在蛭弧菌BdA3.12和Bd109中,发现脱氧胞苷酸、尿苷酸、核糖、腺膘呤和鸟嘌呤。到目前为止,除了蛭弧菌DNA的基因位置和装配结构尚不清楚外,还尚未发现蛭弧菌DNA结构成分的特殊性。表1蛭弧
10、菌109和大肠杆菌ML35大分子及含量成分蛭弧菌大肠杆菌g/1010细胞千重(%)g/1010细胞千重(%)蛋白质32054220054RNA1001783021DNA65111102.8脂类880143208多糖203.42406肽葡聚糖50.8401干重5904000Thomashow2报道,蛭弧菌鞭毛主要是由蛋白质、磷脂和脂多糖组成,其鞭毛轴心由多肽组成。鞭毛鞘易溶于TritonX-100。蛭弧菌鞭毛鞘不同于细胞外膜,具有特殊的生化性质,有鞭毛磷脂高达54%58%,蛋白质的含量仅为23%28%。与典型的细胞外膜的磷脂、蛋白质的含量有明显差异。这种高磷脂/蛋白质的比率揭示鞭毛鞘中具有磷脂双
11、层结构。同时,与细胞膜的磷脂双层结构相比,具有较大的“流动”性,这可能为鞭毛的运动功能提供了物质结构基础。组成鞭毛轴心的多肽主要由分子量为28kDa和29.5kDa的亚基组成,28kDa亚基位于菌体近端,29.5kDa亚基位于菌体远端。蛭弧菌Bd.bdukiz的研究中,发现含有磷脂,其脂质中有的鞘脂类是其它细菌研究中极为罕见的。四、蛭弧菌的菌能量代谢蛭弧菌严格耗氧,在宿主细胞中生长,所需氧压在533Pa以下,其呼吸率为2010-12m1O2/细胞(35,1h)。当蛭弧菌裂解菌体时,呼吸相应的增高。精氧酸、谷氧酸等氨基酸对呼吸有明显的促进作用。蛭弧菌在综合培养基上能产生细胞色素a(吸收峰605n
12、m)、b(吸收峰559、528、426nm)、c(吸收峰522、524nm)。BdA3.12细胞色素c的索瑞带的吸收峰在607nm,其余在421423之间。蛭弧菌Bd6-5-S含有烟酰胺腺嘌呤二核苷酸(NADH2)、烟酰胺腺嘌呤二核苷磷酸(DNAPH2)细胞色素氧化酶,DADH2氧化酶的氧化率为DNDPH2氧化酶的2倍。NADH2氧化酶活性受氰化钾和叠氮钠所抑制,但不能被鱼藤酮及4:1一氧化碳和氧气混合物所抑制。NADH2氧化酶不受上述任何抑制剂的抑制。在蛭弧菌Bd6-5-S抽提物中,谷氨酸、-酮戊二酸、琥珀酸、延胡索酸、苹果酸、丙酮酸、乙酸、-磷酸甘油、烟酰胺腺呤核苷酸及烟酰胺腺嘌呤核苷磷酸
13、不改变耗氧量,但NADH2及NADPH2与耗氧量有关。有人报道,在细胞抽屉提物的微粒中存在三磷酸腺苷酶(ATP酶),同时还存在催化ATP与32P相互转换的酶类物质。由于砷化物、叠氮化合物和2,4-二硝基苯酚对这种转换无抑制作用,因此,这种转换途径可能受氨基酸氧化所催化。氧化NADPH2可能有两种途径:由黄素腺嘌呤二核苷酸(FAD)或黄素单核苷酸(FMN)所刺激,产生过氧化氢,对氰化钾不敏感;通过细胞色素产生过氧化氢,对氰化钾敏感。研究中发现,有些蛭弧菌含有丰富的触酶,但不是所有蛭弧菌都含有触酶。蛭弧菌Bd6-5-S中含有三羧酸循环所需的异柠檬脱氢酶,-酮戊二酸脱氢酶、延胡索酸水解酶、苹果酸脱氢
14、酶及琥珀酸脱氢酶等。但未发现其糖酵解途径,不能利用碳水化合物及乙醇。蛋白质、多肽、氨基酸及核酸是主要的碳源和能量来源。Mitchel发现,一株海洋蛭弧菌可利用宿主大肠杆菌细胞壁为唯一的碳源。Seidler等5检查了7株蛭弧菌,结果发现这些菌株都含有丙氨酸、谷氨酸、苹果酸,异柠檬酸脱氢酶、延胡索酸水解酶、腺苷酸激酶、醌还原酶以及四唑氧化酶。但不同的菌株所含的酶类具有不同的理化性质,这一结果用于蛭弧菌分类是实际指导意义的。Rittenberg等10通过U-14C标记宿主细胞,测得蛭弧菌在细胞内生长时rATP值为18.525.9。一般细菌rATP值为10。达到这样高效果的部分原因,是因为蛭弧菌具有直
15、接从宿主细胞吸收核苷酸的能力。因而贮存了高能磷酸键。在电子转运系统中,每对电子转运产生了3分子ATP(P/O值为3),底物磷酸化作用几乎可以忽略,主要是三羧酸循环及电子转运系统中产能。但其中还是含有低水平的糖酵解酶。在蛭弧菌能量代谢过程中,ATP酶是起主要作用的,约60%80%存在于可溶成分中,对二环已基碳二亚胺(DCCI)敏感,能被其抑制,细胞膜上的ATP酶对DCCI具有抗性,参与蛭弧菌氨基酸及磷酸的转运,对DCCI的抗性主要是由于ATP酶与膜连接后产生的。Hespll等6对蛭弧菌三羧酸循环及糖酵解途径中各种酶活性进行了分析(表2)。最初糖酵酶活性与大肠杆菌及蛭弧菌Bd109中的三羧酸循环中
16、的酶活性相关。当蛭弧菌进入宿主细胞90min时,三羧酸循环中的酶活性增加约10%,而糖酵解酶活性下降25%60%;110180min时,三羧酸循环酶的活性增加50%60%,而糖酵解酶下降到接近0。而磷酸葡萄糖异构酶及甘油醛磷酸脱氢酶的活性较高。由于蛭弧菌严重耗氧,因此这二种酶可能与蛭弧菌生物合成有关,而并非是用于能量代谢。表2蛭弧菌Bd109和大肠杆菌ML35细胞提取液中酶的活性酶的种类大肠杆菌蛭弧菌需氧厌氧需氧葡糖激酶48502.4磷酸葡糖异构酶42204109磷酸果糖激酶7721213果糖磷酸醛缩酶1421989.5磷酸丙糖异构酶14117733甘油醛磷酸脱氢酶9441193690丙酮酸激
17、酶3451907.5柠檬酸合酶1467863360异柠檬酸脱氢酶30525893延胡索酸酶158-苹果酸脱氢酶5597522200-半乳糖苷酶31002810-五、蛭弧菌的生命周期蛭弧菌为细胞内寄生菌,整个生活周期可分为:识别、侵染、吸附(攻击);穿入宿主细胞、生长发育、裂解宿主、释放子代蛭弧菌(图4)。图4蛭弧菌生活周期模式(本图引自:PhilpH(1980).JTheorBiol)a:蛭弧菌侵染宿主细胞;b:穿入宿主细胞壁;c:进入宿主细胞质,鞭毛脱落;d:蛭弧菌在此摄取营养,经过1到数小时生长,蛭弧菌小体延长;e-f:蛭弧菌生长分化,鞭毛形成;g:宿主细胞裂解,子代蛭弧菌释放;-:蛭弧菌
18、腐生生活周期(一) 识别宿主蛭弧菌的化学趋避运动是识别宿主菌细胞的重要方式,当蛭弧菌从宿主细胞内释放之后,处于极度的饥饿状态,约50%在10h内失活,但当有能源及碳源存在时,其存活略有提高。如培养液中宿主细胞含量在1.5105个/ml时,蛭弧菌50%以上通过自由碰撞吸附于宿主细胞上。进一步研究发现,蛭弧菌并非是运用化学趋避性直接感染宿主的,而是蛭弧菌在含有L-天氡氨酸、L-半胱氨酸、L-谷氨酸、L-组氨酸、L-赖氨酸及L-苏氨酸等氨基酸及化合物的环境中,通过化学趋向运动,寻找碳源和能源,缓和“饥饿”状态,这样蛭弧菌在其宿主菌所需的营养物质周围集聚,而宿主菌也向其营养物质接近,局部环境中的宿主菌
19、浓度升高,因此,蛭弧菌增加了对宿主侵染和吸附的机会。(二) 吸附一般来说,开始时蛭弧菌与宿主细胞激烈碰撞,以没有鞭毛的一端(头部)直接吸附到宿主细胞上,头部与宿主通过一系列的反应,菌体也高速转动,速率100r/s以上,在此之后,蛭弧菌通过宿主细胞的细孔(附着位点)进到细胞壁和细胞膜之间,或直接进入细胞质中。侵入过程非常快,几秒种内即可完成。有时可有很多个蛭弧菌同时吸附于同一宿主,有人发现,蛭弧菌吸附宿主是可逆的。蛭弧菌与宿主菌的比例在1:10100时,蛭弧菌吸附率最高。早期研究认为,蛭弧菌仅仅对生活的革兰阴性宿主细胞有吸附能力,进一步研究发现,蛭弧菌对死的宿主菌和革兰阳性菌同样有吸附作用,但吸
20、附率较低。秦生巨等近来研究发现,蛭弧菌对热死(100、80、15min)或三氯甲烷处理致死的宿主细胞吸附略著高于对活菌的吸附率,前者是后者的35-265倍。原因尚不完全清楚,有待进一步研究。但Murray报道,去掉宿主细胞壁外层结构,有利于蛭弧菌的吸附。因此推断,其外层结构中具有防御蛭弧菌侵入的物质,加热或三氯甲烷处理宿主可能使这些天然屏障被破坏。目前已知蛭弧菌的吸附作用受pH值、O2压、温度等许多环境条件的影响。有人推测蛭弧菌吸附于宿主菌时,它们之间存在一个“连接键”,由特定的“吸附器(固着器)”所介导。Varon等报道,蛭弧菌Bd109、BdGB对大肠杆菌和鼠伤寒沙门菌突变株(含有核心抗原
21、,缺乏O抗原侧链)的吸附比对它们的野生株更容易。但抗原缺乏过多,其吸附能力却减弱。他们认为在宿主菌中存在吸附“受体”,位于R抗原中。但Huang重复了这项研究,并未能得到类似结果。Schelling等8进一步的研究发现,蛭弧菌对宿主的吸附性确实存在受体,他认为“受体”存在于宿主细胞壁脂多糖中的核心多糖上,与O侧链无关,但Bd.bukiz的吸附识别反应不需要宿主脂多糖参与。(三)穿入蛭弧菌吸附宿主细胞之后,几分钟内就可破坏细胞壁,穿入宿主细胞,此时鞭毛消失,整个过程最长为60min,穿入方式:有人认为,由于蛭弧菌高速运转,使得蛭弧菌在宿主细胞壁上机械打孔穿入细胞壁。其动力主要来源于特殊的鞭毛结构
22、。Burnhgm报道9,蛭弧菌在穿入前,宿主细胞的吸附附着位点在细胞内压力作用下使局部凸起,蛭弧菌在自身动力的驱使下,首先进入凸出部分,破坏细胞壁,进入宿主细胞。亦有人认为,蛭弧菌吸附宿主细胞后,在细胞壁上钻孔,头部与宿主原生物质体连接在一起,宿主细胞壁结构遭到破坏,导致内外渗透压的平衡失调,从而引起宿主壁及原生质体的膨胀,最后导致蛭弧菌在吸附位点细胞壁与原生质体紧密结合,这时,整个蛭弧菌菌体被动地进入膨胀的细胞壁与原生质之间(周质)。完成穿入过程。有人发现,用蛋白质合成抑制剂,如链霉素、嘌呤素及氯霉素等,可抑制蛭弧菌的穿入。据此认为,蛭弧菌穿入时宿主细胞壁破坏还有诱导酶的产生,诱导物存在于宿
23、主细胞内。当蛭弧菌吸附于宿主细胞壁。Fackeell等报到,蛭弧菌穿入宿主细胞时,至少有溶菌酶、胞壁酸酶及酯酶等,Bd6-5-S还可释放两种多肽酶,分子分量为40kDa及100kDa。Michael等研究证明,当蛭弧菌穿入宿主时,聚糖酶及多肽酶的活性很高,短时间内溶解宿主菌10%15%的肽聚糖。聚糖酶溶解肽聚糖中的氨基糖,多肽酶水解肽聚糖中的二氨基庚二酸、大约30%二氨基庚二酸残基被水解。穿入过程结束时,这两种酶的活性明显降低或消失。与此同时在脂多糖中25%的葡萄糖胺被一种分子量小于2kDa的酶水解,该酶在穿入结束时,也不起任何作用。为此,许多人认为,酶是蛭弧菌穿入宿主细胞壁的主要因子。作者认
24、为,蛭弧菌穿入宿主的机制是极为复杂的,可能是多种因素联合作用的结果。(四)蛭弧菌的生长发育1、蛭弧菌小体的形成及其特性蛭弧菌穿入过程完成之后,对宿主细胞的结构进行一系列的修饰和改造,形成一个适合蛭弧菌生长的环境蛭弧菌小体。当蛭弧菌进入宿主周质间后,宿主细胞肽聚糖的60%70%的葡萄糖胺及胞壁酸发生去乙酰化作用。从而由对溶菌酶敏感转成不敏感,保护菌体肽聚糖不被穿入时释放的酶继续破坏。除此之外,宿主菌细胞壁的修饰过程中,还有非蛋白质大分子与肽聚糖共价连接,同时肽聚糖中的Braun脂蛋白大量丢失。蛭弧菌进入周质间,长链脂肪酸(60%棕榈酸、20%油酸)通过羧酯键等联接于宿主肽聚糖上,由于酰化作用的反
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 噬菌蛭 弧菌 分子生物学 特性 研究 教学 文稿
限制150内