《“基本不等式”省优质课比赛教学设计及反思》(共7页).doc
《《“基本不等式”省优质课比赛教学设计及反思》(共7页).doc》由会员分享,可在线阅读,更多相关《《“基本不等式”省优质课比赛教学设计及反思》(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上“基本不等式”教学设计一 教材分析本节课选自普通高中课程标准数学教科书·数学(5)(人教A版)第三章第4节第一课时,主要内容为基本不等式的推导与简单应用它以前面已学习的有关不等式的基本知识为依据,从利用基本不等式求最值这个侧面来体现基本不等式的应用,而且在基本不等式的推导过程中渗透了分析法的解题方法,为学生后续学习推理与论证的内容埋下伏笔,同时在公式推导过程中渗透数形结合等思想方法,此内容都是学生今后学习中必备的数学素养二学情分析学生有了不等式的基本知识作为铺垫,对不等式的学习已具备基本的认识,而基本不等式来自生活,是从生活中抽象而来的,只要我们选材得当,能
2、够激发学生的学习兴趣,学生也能够较容易理解基本不等式的推导,且达到渗透数学思想、关注数学文化的目的三目标分析教学目标:1学会推导并掌握基本不等式,理解基本不等式的几何意义,并掌握定理中的不等号“”取等号的条件是:当且仅当这两个数相等2探索并了解基本不等式的证明过程,在基本不等式的证明过程体会从特殊到一般的思维过程,领悟数形结合思想的应用3培养学生生活问题数学化,并注重运用数学解决生活中实际问题的意识,有利于数学生活化、大众化,同时通过学生自身的探索研究,领略获取新知的喜悦教学重难点:本节课教学重点是应用数形结合的数学思想理解基本不等式,并从不同角度探索不等式的证明过程教学难点是基本不等式等号成
3、立条件四教学策略本课在设计上采用了由特殊到一般、从具体到抽象的教学策略利用数形结合、类比归纳的思想,层层深入,通过学生自主探究,分析、整理出推导公式的不同思路同时,借助多媒体的直观演示,帮助学生理解,并通过教师的点拨引导,师生互动、讲练结合,从而突出重点、突破难点教法: 问题引导、启发探究和归纳总结相结合学法: 自主学习与合作讨论相结合教学手段: 黑板板书为主结合多媒体辅助教学五教学过程创设情境 引入课题填写下表,与的大小关系 【问题1】观察与的大小关系,从中你发现了什么结论?猜想得到结论:一般的,如果【问题2】你能给出它的证明吗?证法1 用比较法证明: 作差 = 变形 = 判断符号当且仅当,
4、即时取 取等条件证法2 用分析法证明:要证 (1)只要证 (2)要证(2),只要证 0 (3)要证(3),只要证 (4)显然,(4)是成立的当且仅当时,(4)中的等号成立设计意图:通过引导,让学生去证明猜想的结果,进一步巩固比较两个代数式大小的方法,并让学生明白归纳、猜想、证明是我们发现世界、认知世界的重要的思维方法师归纳:(1)如果把看作是正数的等差中项,看作是正数的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.(2)在数学中,我们称为的算术平均数,称为的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.自主探究 深化认识1.认识基本不等式
5、的几何背景【问题3】能否给基本不等式一个几何解释呢?探究:课本第110页的“探究”在右图中,是圆的直径,点是上的一点,,过点作垂直于的弦,连接、你能利用这个图形得出基本不等式的几何解释吗?易证,那么,即.这个圆的半径为,显然,它大于或等于,即,其中当且仅当点与圆心重合,即时,等号成立.因此:基本不等式几何意义是“半径不小于半弦”设计意图:通过展示均值不等式的几何直观解释,培养学生数形结合的意识,并使抽象的问题更加直观、形象,使学生进一步加深对均值不等式的理解2.拓广探究(展示并介绍古代弦图)同学们现在看到的是中国古代数学中著名的一副图,叫做弦图它是由我国三国时期的数学家赵爽设计的早在1300多
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- “基本不等式”省优质课比赛教学设计及反思 基本 不等式 省优 比赛 教学 设计 反思
限制150内