高中数学必修2教案.pdf
《高中数学必修2教案.pdf》由会员分享,可在线阅读,更多相关《高中数学必修2教案.pdf(168页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学(必修 2)教案【必修 2 教学计划】时间:2009.10.20-2010.1.30教参安排 36 节,自己计划 50 节,实际 60 节,机动 10 节课本内容教参安排自己上课作业处理实际用时空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结2 课时2 课时1 课时1 课时1 课时233010010123402点线面之间的位置关系2.1 空间点直线与平面之间的位置关系2.2 直线、平面平行的判定及其性质3333332.3 直线、平面垂直的判定及其性质小结3.1 直线的倾斜角和斜率3.2 直线的方程3.3 两直线的交点坐标与
2、距离公式小结4.1 圆的方程4.2 直线与圆的位置关系4.3 空间直角坐标系3131233直线与方程2331243442352344436圆与方2144347小结程最后上课 58 节左右目目录录柱、锥体的结构特征1台、球体及简单几何体的结构特征2中心投影与平行投影及简单几何体的三视图3简单组合体的三视图4空间几何体的直观图5柱体、锥体、台体的表面积与体积(一)6柱体、锥体、台体的表面积与体积(二)7球的体积和表面积8平面9空间中直线与直线之间的位置关系10空间直线与平面、平面与平面之间的位置关系11直线与平面平行的判定12平面与平面平行的判定13直线与平面、平面与平面平行的性质14直线与平面垂
3、直的判定(1)15直线和平面垂直的判定(2)16平面与平面垂直的判定17直线与平面垂直、平面与平面垂直的性质18三垂线定理(1)19三垂线定理(2)20本章复习(一)21本章复习(二)22直线的倾斜角和斜率(1)23直线的倾斜角和斜率(2)24两条直线的平行与垂直25直线的点斜式、斜截式方程26直线的两点式和截距式方程27直线的一般式方程28直线方程综合29两直线的交点坐标30两点间距离31点到直线的距离公式32两平行线间的距离33直线的综合应用(1)34直线的综合应用(2)35圆的标准方程36圆的一般方程37直线与圆的位置关系(第一课时)38直线与圆的位置关系(第二课时)39圆与圆的位置关系
4、40直线与圆的方程的应用(第一课时)41直线与圆的方程的应用(第二课时)42空间直角坐标系(1)43空间直角坐标系(2)44空间两点间的距离公式(1)45空间两点间的距离公式(2)46空间几何体复习47点、直线、平面之间的位置关系复习48直线与方程复习49圆与方程复习50必修 2 知识过一遍期末复习必修期末复习必修 2 2 之一之一-空间几何体空间几何体期末复习必修期末复习必修 2 2 之二之二-点线面位置关系点线面位置关系期末复习必修期末复习必修 2 2 之三之三-直线与方程直线与方程期末复习必修期末复习必修 2 2 之四之四-圆的方程圆的方程期末复习必修期末复习必修 2 2 之五之五-空间
5、几何体空间几何体【考题苑】必修 1 测试题必修 2 测试题(1)必修 2 测试题(2)必修 1 和必修 2 测试题(1)必修 1 和必修 2 测试题(2)课题:柱、锥体的结构特征课题:柱、锥体的结构特征课课型:型:新授课教学目标教学目标:通过实物模型,观察大量的空间图形,认识柱体、锥体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.教学重点:教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体的结构特征.教学难点:教学难点:柱、锥的结构特征的概括.教学过程:教学过程:一、新课导入一、新课导入:在现实生活中,我们的周围存在着各种各样的物体,它们具有不同的几何形状。由这些物体抽象出来
6、的空间图形叫做空间几何体空间几何体。下面请同学们观察课本 P2 图 1.1-1的物体,它们具有什么样的几何结构特征?你能对它们进行分类吗?分类的依据是什么?学生观察思考,最后归类总结。上图中的物体大体可分为两大类:(一)由若干个平面多变形围成的几何体叫做多面体多面体。围成多面体的各个多边形叫做多面体的面面。相邻两个面的公共边叫做多面体的棱棱,棱与棱的公共点叫做多面体的顶点顶点。(二)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体旋转体,这条定直线叫做旋转体的轴轴。这节课我们主要学习多面体柱、锥的结构特征。二、讲授新课:二、讲授新课:1.1.棱柱的结构特征:棱柱的结
7、构特征:请同学们根据刚才的分类,再对比一下图1.1-1中(2)(5)(7)(9)中的几何体,并寻找它们的共同特征。(师生共同讨论,总结出棱柱的定义及其相关概念)(1)定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱棱柱。(2)棱柱的有关概念:(出示右图模型,边对照模型边介绍)棱柱中,两个互相平行的面叫做棱柱的底面底面(简称底底),其余各面叫做棱柱的侧面侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点顶点。(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱三棱柱、四棱柱、五棱柱等。(4)棱柱
8、的表示用 底 面 各 顶 点 的 字 母 表 示,如 右 图 的 六 棱 柱 可 表 示 为“棱 柱ABCDEFABCDEF”思考 1:有两个面平行,其余各面都是平行四边形的几何体是不是棱柱?解答:不是棱柱。据反例。如右图几何体有两个面平行,其余各面都是平行四边形,但它不是棱柱。2 2棱锥的结构特征:棱锥的结构特征:请同学们根据刚才的分类,再对比一下图 1.1-1中(14)(15)中的物体,并寻找它们的共同特征。(师生共同讨论,总结出棱柱的定义及其相关概念)(1)定义:有一个面是多边形,其余各面都是有一公共点的三角形,由这些面所围成的几何体叫做棱锥棱锥。(2)棱锥的有关概念:(出示右图模型,边
9、对照模型边介绍)棱锥中,这个多边形面叫做棱锥的底面底面或底底,有公共顶点的各个三角形面叫做棱锥的侧面侧面,各侧面的公共顶点叫做棱锥的顶点顶点,相邻侧面的公共边叫做棱锥的侧棱侧棱。(3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥三棱锥、四棱锥、五棱锥等。(4)棱锥的表示用底面各顶点的字母表示,如右图的四棱锥可表示为“棱锥SABCD”讨论:讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比
10、等于顶点到截面距离与高的比的平方.3 3圆柱、圆锥的结构特征:圆柱、圆锥的结构特征:(1)观察图 1.1-1 中的(1)(3)(6)(8)的物体,并思考:圆柱、圆锥如何形成?(2)定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥圆锥.(3)圆柱、圆锥的有关概念:(参照课本图 1.1-7 和 1.1-8 的模型,边对照模型边介绍)在圆柱中,旋转的轴叫做圆柱的轴轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面侧面,无论旋转到什么位置,不垂直于轴
11、的边都叫做圆柱侧面的母线母线。圆锥中的轴轴、底面底面、侧面侧面、母线母线,请学生自己仿照圆柱的定义归纳总结。(4)圆柱、圆锥的表示方法:圆柱、圆锥都用表示它的轴的字母表示,例如图 1.1-7 中的圆柱表示为圆柱O O,图 1.1-8中的圆锥表示为圆锥 SO.(5)讨论:棱柱与圆柱、棱柱与棱锥的共同特征?圆柱和棱柱统称为柱体柱体;棱锥和圆锥统称为锥体锥体.三、巩固练习:三、巩固练习:1.练习:教材 P71、2 题.2.已知圆锥的轴截面等腰三角形的腰长为 5cm,面积为 12cm,求圆锥的底面半径.3.已知圆柱的底面半径为3cm,轴截面面积为 24cm,求圆柱的母线长.四、归纳小结:四、归纳小结:
12、棱柱、棱锥及圆柱、圆锥的结构特征。五、作业五、作业布置布置:教材 P8习题 1.1,第 1 题课后记:课后记:课题:台、球体及简单几何体的结构特征课题:台、球体及简单几何体的结构特征课课型:型:新授课教学目标教学目标:通过实物模型,观察大量的空间图形,认识台体、球体及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.教学重点:教学重点:让学生感受大量空间实物及模型,概括出台体、球体及简单几何体的结构特征。教学难点:教学难点:台、球体及简单几何体的结构特征的概括.教学过程:教学过程:一、复习准备一、复习准备:1.结合棱柱、棱锥、圆柱、圆锥的几何图形,说出:定义、分类、表示。2.
13、结合棱柱、棱锥、圆柱、圆锥的几何图形,说出各几何体的一些几何性质?二、讲授新课二、讲授新课:1.1.棱台与圆台的结构特征:棱台与圆台的结构特征:(1)思考:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?(2)定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台圆台.列举生活中的实例,并找出图1.1-1 中哪些物体是棱台和圆台?(3)结合课本图 1.1-6 认识:棱台的上、下底面、侧面、侧棱、顶点上、下底面、侧面、侧棱、顶点.结合课本图 1.1-9 认识:圆台的上、下底面、侧面、母线、轴上、下底面
14、、侧面、母线、轴。(4)棱台的分类及表示:由三棱锥、四棱锥、五棱锥等截得的棱台分别叫做三棱台、四棱台、五棱台等;棱台用表示底面各顶点的字母表示,例如图 1.1-6 中的棱台表示为棱台 ABCD-ABCD.(5)圆台的表示:圆台用表示它的轴的字母表示,例如图1.1-9 的圆台表示为圆台 OO.(6)讨论:棱台、圆台分别具有一些什么几何性质?棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.棱台与圆台统称为台体台体。2 2球体的结构特征:球体的结构特征:
15、(1)定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫 球体,球体,简称球球.列举生活中的实例,并找出图1.1-1 中哪些物体是球体?(2)结合课本图 1.1-10 认识:球心、半径、直径.在球中,半圆的圆心叫做球的球心球心,半圆的半径叫做球的半径半径,半圆的直径叫做球的直直径径。(3)球的表示:球常用表示球心的字母表示,例如图1.1-10 中的球表示为球 O。(4)讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)3.3.简单组合体的结构特征:简单组合体的结构特征:(1)讨论:现实世界中物体表示的几何体,除了柱体、锥体、台体、球体等简单几何
16、体外,还有哪些物体存在?例如矿泉水塑料瓶由哪些几何体构成?灯管呢?(2)定义:由简单几何体(如柱、锥、台、球等)组合而成的几何体叫简单组合体简单组合体.列举生活中的实例。(3)简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体;一种是由简单几何体截去或挖去一部分而成,例如课本图 1.1-11 中(3)(4)物体表示的几何体。三、巩固练习:三、巩固练习:1.练习:课本 P8 A组 25 题.2.已知长方体的长、宽、高之比为 4312,对角线长为 26cm,则长、宽、高分别为多少?3.棱台的上、下底面积分别是25 和 81,高为 4,求截得这棱台
17、的原棱锥的高4.若棱长均相等的三棱锥叫正四面体,求棱长为a 的正四面体的高.四、归纳小结:四、归纳小结:本节课学习了台、球体及简单几何体的定义、表示;并探究了它们的性质及分类,重点要把握它们的结构特征。五、作业五、作业布置布置:习题 1.1 B 组 第 1-2 题课后记:课后记:课题:中心投影与平行投影课题:中心投影与平行投影及简单几何体的三视图及简单几何体的三视图课课型:型:新授课教学目标教学目标:1、了解中心投影和平行投影的原理;2、能利用正投影绘制空间图形的三视图,并根据所给的三视图识别该几何体。教学重点:教学重点:投影的概念及三视图的画法。教学难点:教学难点:识别三视图所表示的空间几何
18、体.教学过程:教学过程:一、新课导入一、新课导入:1.讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?2.引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。”对于我们所学几何体,常用三视图和直观图来画在纸上.三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.用途:工程建设、机械制造、日常生活.二、讲授新课:二、讲授新课:1.1.中心投影与平行投影:中心投影与平行投影:我们知道,物体在灯光或日光的照射下,就会在地面或墙壁上产生影子,这是一种自然现象。投影就
19、是由这类自然现象抽象出来的。所谓 投影,投影,是光线(投射线投射线)通过物体,向选定的面(投影面投影面)投射,并在该面上得到图形的方法。生活中有许多利用投影的例子,如手影表演,皮影戏等。我们把光由一点向外散射形成的投影光由一点向外散射形成的投影称为中心投影中心投影。中心投影的优缺点优缺点:它能非常逼真的反映原来的物体,主要应用于绘画领域,也常用来概括的描绘一个结构或一个产品的外貌。由于投影中心,投影面和物体的相对位置改变时,直观图的大小和形状亦将改变,因此在另外的一些领域,比如工程制图或技术图样,一般不采用中心投影。我们把在一束平行光线照射下形成的投影在一束平行光线照射下形成的投影,称为平行投
20、影平行投影。平行投影按照投射方向是否正对着投影面,可以分为斜投影斜投影和正投影正投影两种。(如图)我们所讲的视图就是将物体按正投影向投影面投射所得到的图形。三视图就是从三个不同的视角看空间物体的结构,只有这样才能客观的反映物体。所以我们在现实生活中,也要从多个角度看待问题,否则就如瞎子摸象。现在我们比较详细的了解了三视图,接下来,我们就来画物体的三视图。2.2.柱、锥、台、球的三视图:柱、锥、台、球的三视图:(1)三视图的定义:正视图正视图:光线从几何体的前面向后面正投影得到的投影图;侧视图侧视图:光线从几何体的左面向右面正投影得到的投影图;俯视图俯视图:光线从几何体的上面向下面正投影得到的投
21、影图。几何体的正视图、侧视图和俯视图正视图、侧视图和俯视图统称为几何体的三视图三视图。(2)讨论:三视图与平面图形的关系?画出长方体的三视图(教师在讲台上给出模型,并在黑板上画出三视图)注意:注意:一般地,侧视图在正视图的右边,俯视图在正视图的下边。讨论:三视图中反应的长、宽、高的特点?“长对正”“长对正”,“高平齐”“高平齐”,“宽相等”“宽相等”(3)结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果.即正视图、侧视图、俯视图:(4)试画出:棱柱、棱锥、棱台、圆台的三视图.(学生自己动手画图)(5)讨论:三视图,分别反
22、应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。(6)讨论:根据以上的三视图,如何逆向得到几何体的形状.(试变化以上的三视图,说出相应几何体的摆放)三、巩固练习三、巩固练习:(1)画出正四棱锥的三视图.(2)画出右图所示几何体的三视图.右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.四、归纳小结:四、归纳小结:今天我们学习了中心投影和平行投影,三视图的画法以及由三视图说实物。三视
23、图画法里面要注意“长对正”,“高平齐”,“宽相等”。五、作业五、作业布置布置:1、画出右图三棱柱的三视图。2已知某物体的三视图如图所示,那么这个物体的形状是_.正视图侧视图俯视图课后记:课后记:课题:简单组合体的三视图课题:简单组合体的三视图课课型:型:新授课教学目标教学目标:能利用正投影绘制简单组合体的三视图,并根据所给的三视图说出该几何体由哪些简单几何体构成。教学重点:教学重点:简单组合体三视图的画法。教学难点:教学难点:识别三视图所表示的空间几何体.教学过程:教学过程:一、复习回顾一、复习回顾:1中心投影与平行投影的概念:中心投影:光由一点向外散射形成的投影。平行投影:在一束平行光线照射
24、下形成的投影。2三视图的概念:正视图:光线从几何体的前面向后面正投影得到的投影图;侧视图:光线从几何体的左面向右面正投影得到的投影图;俯视图:光线从几何体的上面向下面正投影得到的投影图。几何体的正视图、侧视图和俯视图统称为几何体的三视图。在三视图中要注意:(1)要遵守“长对正”,“高平齐”,“宽相等”的规律;(2)要注意三视图的主视图反映上下、左右关系,俯视图反映前后、左右关系,左视图反映前后、上下关系,方位不能错。二、讲授新课:二、讲授新课:1 1简单组合体的三视图:简单组合体的三视图:例例 1 1:画出下列几何体的三视图。分析:画三视图之前,先把几何体的结构弄清楚。例例 2 2:如图:设所
25、给的方向为物体的正前方,试画出它的三视图(单位:cm)。(与学生一起观察物体,给于必要的阐述)主主视图视图左左视图视图俯俯视图视图正前方正前方现在,我们已经学会了画物体的三视图,反过来,由三视图,你能说出是什么物体吗?例例 3 3:根据下列三视图,说出立体图形的形状。(1)(1)(2)(2)(3)(3)解:(1)圆台;(2)正四棱锥;(3)螺帽。例例 4 4:下图是一个物体的三视图,试说出物体的形状。主视图主视图左视图左视图俯视图俯视图三、巩固练习三、巩固练习:课本第 15 页练习第 14 题。四、归纳小结:四、归纳小结:今天我们学习了三视图的画法以及由三视图说实物。重点要通过三视图识别所表示
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 必修 教案
限制150内