人教版七年级数学上册全册教案.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《人教版七年级数学上册全册教案.pdf》由会员分享,可在线阅读,更多相关《人教版七年级数学上册全册教案.pdf(80页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章 有理数1.11.1正数和负数(1 1)教学目标:1、了解正数与负数是从实际需要中产生的。2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。3、会用正、负数表示实际问题中具有相反意义的量。重点:正、负数的概念重点:负数的概念、正确区分两种不同意义的量。教学过程:一、创设情境-引入上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考师:今天我们已经是七年级的学生了,我是你们的数学老师下面我先向你们做一下自我介绍,我的名字是XXX,身高1.62米,体重46.5千克,今年XX岁我们的班
2、级是七(X)班,有XX个同学,其中男同学有XX个,占全班总人数的XX问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?(学生思考)(交流后)师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)问题2:在生活中,仅有整数和分数够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流 (也可以出示气象预报中的气温图,地图中表示地形高低的地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时需要一种前面带有“一”号的新数2、正数和负数教师:如何来表示
3、具有相反意义的量呢?我们现在来解决问题4提出的问题。结论:零下5用5来表示,零上5用5来表示。为了用数表示具有相反意义的量,我们把其中一种意义的量。如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。正的用小学学过的数(0除外)表示,负的用小学学过的数(0除外)在前面加上“”(读作负)号来表示。根据需要,有时在正数前面也加上“+”(读作正)号。注意:数0既不是正数,也不是负数。0不仅仅表示没有,也可以表示一个确定的量,如温度计中的0不是没有表示没有温度,它通常表示水结成冰时的温度。正数、负数的“+”“”的符号是表示量的性质相反,这种符号叫做性质符号。三、巩固知识1、课本P3 练习
4、1,2,3,42、课本P4例归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义。四、总结什么是具有相反意义的量?什么是正数,什么是负数?引入负数后,0的意义是什么?五、布置作业课本P5习题1.1第1、2题。教后记:1.11.1 正数和负数(2)(2)教学目标.通过对数“零”的意义的探讨,进一步理解正数和负数的概念;.利用正负数正确表示相反意义的量(规定了向指定方向变化的量);.进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣教学重点与难点重点:深化对正负数概念的理解难点:正确理解和表示向指定方向变化的量教学设计 知识回顾和深化 回顾:上一节课我们
5、知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示这就是说:数的范围扩大了(数有正数和负数之分)那么,有没有一种既不是正数又不是负数的数呢?问题1:有没有一种既不是正数又不是负数的数呢?学生思考并讨论,(数0既不是正数又不是负数,是正数和负数的余界,是基准这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例予供参考).例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的最高温度是零上7,最低温度是零下5时,就应该表示为+7和
6、一5,这里+7和一5就分别称为正数和负数,那么当温度是零度时,我们应该怎样表示呢?(表示为 0),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数问题2:引入负数后,数按照“两种相反意义的量”可以分几类?问题解决 问题3:教科书第6页例题1说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示这种描述在实际生活中有广泛的应用,应予以重视教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量 归纳:在同一个问题中,分别
7、用正数和负数表示的量具有相反的意义(教科书第6页)类似的例子很多,如:水位上升一3m,实际表示什么意思呢?收入增加一10,实际表示什么意思呢?等等可视教学中的实际情况进行补充 巩固练习 教科书第6页练习 9阅读与思考教科书第8页塑小结以问题的形式,要求学生思考交流:引入负数后,你是怎样认识数0的,数0的意义有什么变化?怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别是,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数 作业 必做题:教科书第7页习题11第3、6、7、8题;选做题:(1)甲冷
8、库的温度是一12,乙冷库的温度比甲冷库低 5,则乙冷库的温度是 ,(2)一种零件的内径尺寸在图纸上是9005(单位:mm),表示这种零件的标准尺寸是9 mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?备选题:摩托车厂本周计划每天生产250辆摩托车由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增长值如下表:星期一二三四 五 六 日增减一5 +7 -3 +4 4 -10 -9根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?设计思想 本课主要目的是加深对正负数概念的理解和用正负数表示实际
9、生产生活中的向指定方向变化的量数0既不是正数,也不是负数(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界了解0的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理数概念的建立都有帮助由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识 在实际中的合理应用,在体验中感悟和深化知识通
10、过实际例子的学习激发学生学习数学的兴趣教后感:总体掌握较好,但对于课堂中未涉及的“赢利200远“的反面”亏损“一词大部分学生不能想出来,应加强这方面的词汇的积累。1.2.11.2.1有理数教学目标:1、正确理解有理数的概念及分类,能够准确区分正整数、0、负整数、正分数、负分数。2、掌握有理数的分类方法,会对有理数进行分类,体验分类是数学上常用的处理问题的方法。重点:正确理解有理数的概念重点:有理数的分类教学过程:一、知识回顾,导入新课什么是正数,什么是负数?问题1:学习了负数之后,我们对数的认识范围扩大了,你能写出三个不同类型的数吗?(请三位同学上黑板上写出,其他同学在自己的练习本上写出,如果
11、有出现不同类型的数,同学们可上黑板补充。)问题2:观察黑板上的这么数,并给它们分类。先让学生独立思考,接着讨论和交流分类的情况,得出数的类型有5类:正整数、0、负整数、正分数、负分数。二、讲授新课1、有理数的定义引导学生对前面的数进行概括,得出:正整数、零、负整数统称为整数;正分数和负分数统称分数。整数可以看作分母为1的分数,正整数、零、负整数、正分数和负分数都可以写成分数的形式,这样的数称为有理数,即整数和分数统称有理数。2、有理数的分类让学生在总结出5类数基础上,进行概括,尝试进行分类,通过交流和讨论,再加上老师适当的指导,逐步得出下面的两种分类方式。(1)按定义分类:(2)按性质分类:有
12、理数整数分数正整数0负整数正分数负分数有理数正有理数负有理数正整数正分数负整数负分数0 小结 到现在为止我们学过的数都是有理数(圆周率丌除外),有理数可以按不同的标准进行分类,标准不同时,分类的结果也不同练一练 (1)教科书第18页习题12第1题 (2)把下列各数填在相应的大括号里:一4,+1,o001,o,一17,15正数集合 ,负数集合 正整数集合 ,分数集合 (1)下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?1,O,+7,5,79,67,1,+51 (2)0是整数吗?自然数一定是整数吗?一定是正整数吗?整数一定是自然数吗?教后感:学生能准确地将有理数填入相应的数的集合,但给
13、定的集合举具体的数填空却掌握的不是很好,如备选填空要求三部分分别举了2个具体的数,好多学生就不能举出。1.2.21.2.2数轴教学目标:1、掌握数轴的概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。重点:正确理解数轴的概念和用数轴上的点表示有理数重点:数轴的概念和用数轴上的点表示有理数教学过程:二、讲授新课数轴的三要素:原点、正方向、单位长度2、画一条数轴。3、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表
14、示的数吗?4、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?5、每个数到原点的距离是多少?由此你会发现了什么规律?(小组讨论,交流归纳)归纳出一般结论,即课本P9的归纳。三、巩固知识课本P10 练习1、2题四、总结请学生作出总结:什么是数轴?数轴的三要素是什么?如何画数轴?如何在数轴上表示有理数?五、布置作业课本P14习题1.2 第2题。教后记:1.2.31.2.3 相反数教学目标:1、掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2、通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3、体验数形结合的思想。重点:求已知数的相反数重点:根据相反数的意义化简符号教学过
15、程:二、讲授新课1、相反数的定义问题:像2和2,5和5这样的两个数叫做互为相反数,试问要具备什么特点的两个数才是互为相反数?(学生思考后举手回答)归纳出:只有符号不同的两个数叫做互为相反数。特别地,0 0的相反数仍是0 0。2、理解概念判断:2的相反数是()5是相反数()相反数等于它本身的数只有0()符号不同的两个数互为相反数()3、多重符号的化简思考:数轴上表示相反数的两个点和原点有什么关系?a的相反数是a,a表示任意数正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“”号。问题1:若把a分别换成+5,7时,这些数的相反数怎样表示?师生共同得出:(+5)5,(7)7问题2:在一个数
16、前面加上“”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?如,+(3),+(+6.2)学生回答:在一个数的前面加上“+”号仍表示这个数,因为“+”“+”号可以省略。三、巩固知识课本P11 练习1、2、3题四、总结1、相反数的定义2、互为相反数的数在数轴上表示的点的特征3、怎样求一个数的相反数?怎样表示一个数的相反数?五、布置作业课本P15习题1.2第3题。教后记:1.2.41.2.4绝对值教学目标:1、理解绝对值的概念及其几何意义,通过从数形两个方面理解绝对值的意义,初步了解数形结合的思想方法。2、会求一个数的绝对值,知道一个数的绝对值,会求这个数。3、掌握绝对值的有关性质。4、通过
17、应用绝对值解决实际问题,培养学生深厚的学习兴趣,提高学生学数学的好奇心和求知欲。重点:绝对值的概念重点:绝对值的几何意义教学过程:二、讲授新课问题1:请说出在数轴上,+3和3分别在原点的哪边?距离原点有几个单位长度?那对于5,+7,0呢?请两位同学起来回答。教师归纳:一般地,数轴上表示数a a的点与原点的距离叫做数 a a的绝对值。为了方便,我们用一种符号来表示一个数的绝对值,约定在一个数的两旁各画一条竖线来表示这个数的绝对值,记作a a,读作a的绝对值。填表:a的相反数 a的绝对值a数aa20510.5010.5205学生独立完成后,再对所得的规律进行小组讨论。教师归纳:由绝对值的定义可知:
18、一个正数的绝对值是它本身问题2:把绝对值的代数定义用数学符号如何表示?当a0时,a=a;当a0时,a=0;a=a。三、巩固知识a0时,一个负数的绝对值是它的相反数0的绝对值是0当课本P12 练习第1、2题。四、总结本节课主要学习绝对值的概念、表示方法及其几何意义,并会求一个数的绝对值。主要用到的思想是数形结合。五、布置作业课本P15习题1.2第4题。教后记:有理数的大小比较教学目标:1、能说出有理数大小的比较法则;2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小。能利用数轴对多个有理数进行有序排列;3、能正确应用符号“”、“”、“”、“”,写出表示推理过程中简
19、单的因果关系。重点:运用法则借助数轴比较两个有理数的大小重点:利用绝对值概念比较两个负分数的大小教学过程:一、创设情境,引入新课比较:2 3 0 0注:在此练习中,对前三对数的比较学生基本都能解决,但对第四对数的比较会产生问题,由此引出新课。二、讲授新课规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。根据以上规定,重点探讨怎样比较两个负数的大小。通过观察,分别让学生说出以上几类数之间的大小关系,最后教师归纳并板书:(1 1)正数大于0 0,0 0大于负数,正数大于负数;(2 2)两个负数,绝对值大的反而小。问题5:课本P13“思考”,请学生回答。三、巩
20、固知识课本P13 例题、课本P14 练习四、总结这节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较;另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用“”)连接,这种方法在比较多个有理数大小时非常简便.五、布置作业课本P15习题1.2第5、6题。教后记:1.3.1 有理数的加法(一)教学目标:1、使学生在现实情境中理解有理数加法的意义2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。3、在教学中适当渗透分类讨论思想。重点:有理数的加法法则重点:异号两数相加的法则教学过程:二、讲
21、授新课1、同号两数相加的法则问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+38(m)教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(5)+(3)8(m)师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。2、异号两数相加的法则教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向
22、运动了多少米?学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(3)2(m)师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。3、互为相反数的两个数相加得零。教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。师生共同归纳出:互为相反数的两个数相加得零教师:你能用加法法则来解释这个法则吗?学生回答:可用异号两数相加的法则来解释。一般地,还有一个数同0相加,仍得这个数。三、巩固知识课本P18 例1,例2、课本P118 练习1、
23、2题四、总结运算的关键:先分类,再按法则运算;运算的步骤:先确定符号,再计算绝对值。注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。五、布置作业课本P24习题1.3第1、7题。教后记:1.3.1 有理数的加法(二)教学目标:1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。2、培养学生观察、比较、归纳及运算能力。重点:有理数加法运算律及其运用。重点:灵活运用运算律教学过程:二、讲授新课教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?(学生回答省略)师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。即
24、:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)三、巩固知识课本P20 练习1、2题四、总结本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。五、布置作业课本P24习题1.3第2、8题。教后记:1.3.2 有理数的减法(一)教学目标:1、经历探索有理数减法法则的过程,理解有理数的减法法则2、能较熟练地进行有理数的减法运算3、初步体验由减法法则把有理数
25、的减法运算转化为有理数加法运算的数学转化思想。重点:有理数减法法则及应用重点:运用有理数减法法则解决数学问题教学过程:二、讲授新课课本P22“探究”计算:98,9+(8);157,15+(7)问题1:下列等式成立吗?(1)15515+(5)(2)15(5)15+5(3)8844(392)8844+392问题2:上面的关系式把有理数的减法转化成了有理数的加法,由此我们得到了有理数的减法法则,你能用文字来描述吗?减去一个数,等于加上这个数的相反数。问题3:若用a、b表示两数,你能用数学式子描述有理数的减法法则吗?减数变为相反数作加数减号变加号a b =a +(b)三、巩固知识课本P22 例5、课本
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 上册 教案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内