高三数学教案文案.pdf
《高三数学教案文案.pdf》由会员分享,可在线阅读,更多相关《高三数学教案文案.pdf(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高三数学教案文案高三数学教案文案高三数学教案高三数学教案 20212021 文案文案 1 11)了解数的概念发展的过程和动力;(2)了解引进虚数单位 i 的必要性和作用;理解 i 的性质.(3)正确对复数进行分类,掌握数集之间的从属关系;(4)了解数系从自然数到有理数到实数再到复数扩充的基本思想.教学建议1.教材分析(1)知识结构首先简明扼要地对已经学过的数集因生产与科学发展的需要而逐步扩充的过程作了概括;然后说明,数集的每一次扩充,对数学学科本身来说,也解决了原有数集中某种运算不是永远可以实施的矛盾,使得某些代数方程在新的数集中能够有解。从而引出虚数单位 i 及其性质,接着,将数的范围扩充到
2、复数,并指出复数后来由于在科学技术中得到应用而进一步发展。从实际生产需要推进数的发展自然数 整数 有理数 无理数从解方程的需要推进数的发展负数 分数 无理数 虚数(2)重点、难点分析(一)认识数的概念的发展的动力从正整数扩充到整数,从整数扩充到有理数,从有理数扩充到实数,数的概念是不断发展的,其发展的动力来自两个方面。解决实际问题的需要由于计数的需要产生了自然数;为了表示具有相反意义的量的需要产生了整数;由于测量的需要产生了有理数;由于表示量与量的比值(如正方形对角线的长度与边长的比值)的需要产生了无理数(既无限不循环小数)。解方程的需要。为了使方程 有解,就引进了负数;为了使方程 有解,就要
3、引进分数;为了使方程 有解,就要引进无理数。引进无理数后,我们已经能使方程 永远有解,但是,这并没有彻底解决问题,当 时,方程 在实数范围内无解。为了使方程()有解,就必须把实数概念进一步扩大,这就必须引进新的数。(二)注意数的概念在扩大时要遵循的原则第一,要能解决实际问题中或数学内部的矛盾。现在要解决的就是在实数集中,方程 无解这一矛盾。第二,要尽量地保留原有数集(现在是实数集)的性质,特别是它的运算性质。(三)正确确认识数集之间的关系有理数就是一切形如 的数,其中,所以有理数集实际就是分数集.“循环节不为 0 的循环小数也都是有理数”.有理数=分数=循环小数,实数=小数.自然数集 N、整数
4、集 Z、有理数集 Q、实数集 R、复数集 C 之间有如下的包含关系:2.教法建议(1)注意知识的连续性:数的发展过程是漫长的,每一次发展都来自于生产、生活和计算等需要,所以在教学时要注意使学生认识到数的发展的两个动力.(2)创造良好的课堂气氛:由于本节课要了解扩充实数集的必要性,所以,教师可以多向学生介绍一些数的发展过程中的一些科学史,课堂学习的气氛可以营造成一种师生共同研究、共同交流的气氛。数的概念的发展教学目的1.使学生了解数是在人类社会的生产和生活中产生和发展起来的,了解虚数产生历史过程;2.理解并掌握虚数单位的定义及性质;3.掌握复数的定义及复数的分类.教学重点虚数单位的定义、性质及复
5、数的分类.教学难点虚数单位的性质.教学过程一、复习引入原始社会,由于计数的需要产生了自然数的概念,随着文字的产生和发展,出现了记数的符号,进而建立了自然数的概念。自然数的全体构成自然数集.为了表示具有相反意义的量引进了正负数以及表示没有的零,这样将数集扩充到有理数集有些量与量之间的比值,如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为解决这种矛盾,人们又引进了无理数,有理数和无理数合并在一起,构成实数集.数的概念是人类社会的生产和生活中产生和发展起来的,数学理论的研究和发展也推动着数的概念的发展,数已经成为现代社会生活和科学技术时刻离不开的科学语言和工具.二、新课教学(一)虚数
6、的产生我们知道,在实数范围内,解方程 是无能为力的,只有把实数集扩充到复数集才能解决.对于复数(a、b 都是实数)来说,当 时,就是实数;当 时叫虚数,当时,叫做纯虚数.可是,历引进虚数,把实数集扩充到复数集可不是件容易的事,那么,历是如何引进虚数的呢?16 世纪意大利米兰学者卡当(15011576)在 1545 年发表的重要的艺术一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”.他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把 10 分成两部分,使它们的乘积等于 40 时,他把答案写成,尽管他认为 和 这两个表示式是没有意义的、想象的、虚无飘渺的,但他还是把 10
7、分成了两部分,并使它们的乘积等于 40.给出“虚数”这一名称的是法国数学家笛卡尔(15961650),他在几何学(1637年发表)中使“虚的数与“实的数”相对应,从此,虚数才流传开来.数系中发现一颗新星虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数.德国数学家菜不尼茨(16641716)在 1702 年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”.瑞士数学大师欧拉(17071783)说:“一切形如,习的数学式子都是不可能有的,想象的数,因为它们所表示的是负数的平方根.对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么
8、都不是少些什么,它们纯属虚幻.”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地.法国数学家达兰贝尔(.17171783)在 1747 年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是 的形式(a、b 都是实数)(说明:现行教科书中没有使用记号 而使用).法国数学家棣莫佛(16671754)在 1730 年发现公式了,这就是的探莫佛定理.欧拉在 1748 年发现了有名的关系式,并且是他在微分公式(1777 年)一文中第一次用 i 来表示-1 的平方根,首创了用符号 i 作为虚数的单位.“虚数”实际上不是想象出来的,而它是确实存在的.挪威的测量学家未塞
9、尔(17451818)在 1779 年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视.德国数学家高斯(17771855)在 1806 年公布了虚数的图象表示法,即所有实数能用一条数轴表示,同样,虚数也能用一个平面上的点来表示.在直角坐标系中,横轴上取对应实数 a 的点 A,纵轴上取对应实数 b 的点 B,并过这两点引平行于坐标轴的直线,它们的交点 C 就表示复数.象这样,由各点都对应复数的平面叫做“复平面”,后来又称“高斯平面”.高斯在 1831 年,用实数组(a,b)代表复数,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”.他又在 1832
10、年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法直角坐标法和极坐标法加以综合.统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数一对应,扩展为平面上的点与复数一对应.高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间一对应的关系,阐述了复数的几何加法与乘法.至此,复数理论才比较完整和系统地建立起来了.经过许多数学家长期不懈的努力,深刻探讨并发展了复数理论,才使得在数学领域游荡了 200 年的幽灵虚数揭去了神秘的面纱,显现出它的本来面目,原来虚数不虚呵.虚数成为了数系大家庭中一员,从而实数集才扩充到了复数集.随着科学和技术的进步,复数理论已
11、越来越显出它的重要性,它不但对于数学本身的发展有着极其重要的意义,而且为证明机翼上升力的基本定理起到了重要作用,并在解决堤坝渗水的问题中显示了它的威力,也为建立巨大水电站提供了重要的理论依据.(二)、虚数单位1.规定 i 叫虚数单位,并规定:(1)(2)实数与它进行四则运算时,原有的加、乘运算律仍然成立2.形如()的数叫复数,常用一个字母 z 表示,即()注:(1)()叫复数的代数形式;(2)以后说复数 都有;(3)a 叫复数()的实部记作;b 叫复数()的虚部,用 表示;(4)全体复数的所成的集合叫复数集用 C 表示.例 1.指出下列复数的实部、虚部:(1(2)(4)(5)(6)(7)(8)
12、103.复数()当 时 z 是实数,当 时,z 是虚数.例 2.()取什么值时,复数 是()(1)实数(2)纯虚数(3)零解:,(1)z 为实数,则 解得:或(2)z 为实数,则 解得:(3)z 为零,则 解得:高三数学教案高三数学教案 20212021 文案文案 2 2高中一年级的新同学们,当你们踏进高中校门,漫步在优美的校园时,看见老师严谨而热心的教学和师兄、师姐深切的关怀时,我想你们会暗暗决心:争取学好高中阶段的各门学科。在新的高考制度3+综合普遍吹散全国大地之时,代表人们基本素质的3科中,数学是最能体现一个人的思维能力,判断能力、反应敏捷能力和聪明程度的学科。数学直接影响着国民的基本素
13、质和生活质量,良好的数学修养将为人的一生可持续发展奠定基础,高中阶段则应可能充分反映学习者对数学的不同需求,使每个学生都能学习适合他们自己的数学。一、高中数学课的设置高中数学内容丰富,知识面广泛,高一年级上学期学习第一册(上):第一章集合与简易逻辑;第二章函数;第三章数列。高一年级下学期学习第一册(下):第四章三角函数;第五章平面向量。高二年级上学期学习第二册(上):第六章不等式;第七章直线和圆的方程;第八章圆锥曲线方程。高二年级下学期学习第二册(下):第九章直线、平面、简单几何体;第十章排列、组合和概率。高二结束将有数学会考。高三年级文科生学习第三册(选修 1):第一章统计;第二章极限与导数
14、。高三年级理科生学习第三册(选修 2):第一章概率与统计;第二章极限;第三章导数;第四章复数。高三还将进行全面复习,并有重要的高考。二、初中数学与高中数学的差异。1、知识差异。初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是0-1800范围内的,但实际当中也有 7200 和-300等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习立体几何(第九章直线、平面、简单几何体),将在三维空间中求角和距离等。还将学习排列组合知识,以便解决排队方法种数等问题。如:三个人排成
15、一行,有几种排队方法,(=6 种);四人进行乒乓球双打比赛,有几种比赛场次?(答:=3 种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了 i2=-1,就使-1 的平方根为i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。2、学习方法的差异。(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课
16、,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。(2)模仿与创新的区别。初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来
17、了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较 a 与 2a 的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。3、学生自学能力的差异初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科
18、学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有 18-24 年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。4、思维习惯上的差异初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。
19、代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。5、定量与变量的差异初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程 ax2+bx+c=0(a0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有
20、一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。三、如何学好高中数学良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的 60%以上。1、有良好的学习兴趣两千多年前孔子说过:知之者不如好之者,好之者不如乐之者。意思说,干一件事
21、,知道它,了解它不如爱好它,爱好它不如乐在其中。好和乐就是愿意学,喜欢学,这就是兴趣。兴趣是的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的认识过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?(1)课前预习,对所学知识产生疑问,产生好奇心。(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价
22、,变为鞭策学习的动力。(3)思考问题注意归纳,挖掘你学习的潜力。(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、至交坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。2、建立良好的学习数学习惯。习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程
23、中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。3、有意识培养自己的各方面能力数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培
24、养这些能力,会精心设计智力课和智力问题比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。四、其它注意事项1、注意化归转化思想学习。人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。2、学会数学教材的数学思想方法。数学教材是采用蕴含披露的方式
25、将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:从定义角度求 3、-5 的相反数,相反数是的数是_.从数轴角度理
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学教案 文案
限制150内