二次根式的化简(共3页).doc
《二次根式的化简(共3页).doc》由会员分享,可在线阅读,更多相关《二次根式的化简(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上【二次根式化简】1、被开方数是小数的二次根式化简例1、化简分析:被开方数是小数时,常把小数化成相应的分数,后进行求解。解:=。评注:化简时通常分子、分母同时乘以分数的分母,使分母上数或者式子成为完全平方数或者完全平方式。2、被开方数是分数的二次根式化简例2、化简分析:因为,125=5×5×5=52×5,所以,只需分子、分母同乘以5就可以了。解:=。评注:化简时,通常分子、分母同时乘以分数分母的一个恰当因数或因式,使分母上数或者式子成为完全平方数或者完全平方式。3、被开方数是非完全平方数的二次根式化简例3、化简分析:因为,48=16
2、5;3=42×3,所以,根据公式(a0,b0),就可以把积的是完全平方数或平方式的部分从二次根号下开出来,从而实现化简的目的。解:=。评注:将被开方数进行因数分解,是化简的基础。4、被开方数是多项式的二次根式化简例4、化简分析:当指数是奇数时,保持底数不变,设法把指数化成是一个偶数和一个奇数的积。解:=。评注:当多项式从二次根号中开出来的时候,一定要注意添加括号。否则,就失去意义。5、被开方数是隐含条件的二次根式化简例5、把根号外的因式移到根号内,得( ).A B C D 【答案】C.由二次根式的意义知x0,则 .【总结升华】在利用二次根式性质化简时,要注意其符号,要明确是非负数,反
3、过来将根号外的因式移到根号内时,也必须向里移非负数。如此例中x0,所以只能向根号里移,到根号里面要变成.练习1化简二次根式的结果是( )(A) (B) (C) (D)2. 化简a的结果是: A) B) C) D)3. 已知0,化简二次根式的正确结果为_【化简】例1. 已知a、b、c为ABC的三边长,化简 【答案与解析】a、b、c为ABC的三边长, 原式 【总结升华】利用三角形任意两边之和大于第三边和两边之差小于第三边进行化简.【练习】ABC的三边长为a、b、c,则= .例2.实数在数轴上对应的点如图:化简.【答案与解析】由数轴可知并且=【总结升华】本题不仅考查了二次根式和绝对值的化简问题,同时考查了学生的观察能力.通过观察确定的大小关系是本题的关键.专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 根式
限制150内