初三复习二次函数专题(共9页).doc
《初三复习二次函数专题(共9页).doc》由会员分享,可在线阅读,更多相关《初三复习二次函数专题(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数复习专题(二)、知识要点1.二次函数解析式的几种形式:一般式:(a、b、c为常数,a0)顶点式:(a、h、k为常数,a0),其中(h,k)为顶点坐标。交点式:,其中是抛物线与x轴交点的横坐标,即一元二次方程的两个根,且a0,(也叫两根式)。2.二次函数的图象二次函数的图象是对称轴平行于(包括重合)y轴的抛物线,几个不同的二次函数,如果a相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:左加右减,上加下减,具体平移方法如下表所示。在画的图象时,可以先配方成的形式,然后将的图象上(下)
2、左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。然后取图象与y轴的交点(0,c),及此点关于对称轴对称的点(2h,c);如果图象与x轴有两个交点,就直接取这两个点(x1,0),(x2,0)就行了;如果图象与x轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y轴交点及其对称点),一般画图象找5个点。3.二次函数的性质函数二次函数(a、b、c为常数,a0)(a、h、k为常数,a0)a0a0a0a0图象(1)抛物线开口向上,并向上无限延伸(1)抛物线开口向下,并向下无限延伸(1)抛物线开口向上,并向上无限延伸(1)抛物线开
3、口向下,并向下无限延伸性(2)对称轴是x,顶点是()(2)对称轴是x,顶点是()(2)对称轴是xh,顶点是(h,k)(2)对称轴是xh,顶点是(h,k)质(3)当时,y随x的增大而减小;当时,y随x的增大而增大(3)当时,y随x的增大而增大;当时,y随x的增大而减小(3)当时,y随x的增大而减小;当xh时,y随x的增大而增大。(3)当xh时,y随x的增大而增大;当xh时,y随x的增大而减小(4)抛物线有最低点,当时,y有最小值,(4)抛物线有最高点,当时,y有最大值,(4)抛物线有最低点,当xh时,y有最小值(4)抛物线有最高点,当xh时,y有最大值4.求抛物线的顶点、对称轴和最值的方法配方法
4、:将解析式化为的形式,顶点坐标为(h,k),对称轴为直线,若a0,y有最小值,当xh时,;若a0,y有最大值,当xh时,。公式法:直接利用顶点坐标公式(),求其顶点;对称轴是直线,若若,y有最大值,当5.抛物线与x轴交点情况:对于抛物线当时,抛物线与x轴有两个交点,反之也成立。当时,抛物线与x轴有一个交点,反之也成立,此交点即为顶点。当时,抛物线与x轴无交点,反之也成立。(三)、考点解读例1.已知某二次函数的图象经过点A(1,6),B(2,3),C(0,5)三点,求其函数关系式。分析:设,其图象经过点C(0,5),可得,再由另外两点建立关于的二元一次方程组,解方程组求出a、b的值即可。解:设所
5、求二次函数的解析式为因为图象过点C(0,5),又因为图象经过点A(1,6),B(2,3),故可得到:所求二次函数的解析式为说明:当已知二次函数的图象经过三点时,可设其关系式为,然后确定a、b、c的值即得,本题由C(0,5)可先求出c的值,这样由另两个点列出二元一次方程组,可使解题过程简便。例2.已知二次函数的图象的顶点为(1,),且经过点(2,0),求该二次函数的函数关系式。分析:由已知顶点为(1,),故可设,再由点(2,0)确定a的值即可解:,则图象过点(2,0),即:说明:如果题目已知二次函数图象的顶点坐标(h,k),一般设,再根据其他条件确定a的值。本题虽然已知条件中已设,但我们可以不用
6、这种形式而另设这种形式。因为在这种形式中,我们必须求a、b、c的值,而在这种形式中,在顶点已知的条件下,只需确定一个字母a的值,显然这种形式更能使我们快捷地求其函数关系式。例3.已知二次函数图象的对称轴是,且函数有最大值为2,图象与x轴的一个交点是(1,0),求这个二次函数的解析式。分析:依题意,可知顶点坐标为(3,2),因此,可设解析式为顶点式解:设这个二次函数的解析式为图象经过(1,0),所求这个二次函数的解析式为即:说明:在题设的条件中,若涉及顶点坐标,或对称轴,或函数的最大(最小值),可设顶点式为解析式。例4.已知:抛物线在x轴上所截线段为4,顶点坐标为(2,4),求这个函数的关系式分
7、析:由于抛物线是轴对称图形,设抛物线与x轴的两个交点为(x1,0),(x2,0),则有对称轴,利用这个对称性很方便地求二次函数的解析式解:顶点坐标为(2,4)对称轴是直线x2抛物线与x轴两交点之间距离为4两交点坐标为(0,0),(4,0)设所求函数的解析式为图象过(0,0)点,所求函数的解析式为例5.已知某抛物线是由抛物线经过平移而得到的,且该抛物线经过点A(1,1),B(2,4),求其函数关系式。分析:设所求抛物线的函数关系式为,则由于它是抛物线经过平移而得到的,故a2,再由已知条件列出b、c的二元一次方程组可解本题。解:设所求抛物线的函数关系式为,则由已知可得a2,又它经过点A(1,1),
8、B(2,4)故:解得:所求抛物线的函数表达式为:说明:本题的关键是由所求抛物线与抛物线的平移关系,得到例6.有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m。(1)在如图所示的直角坐标系中,求出该抛物线的解析式。(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),试求出用d表示h的函数关系式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?分析:(1)拱桥是一个轴对称图形,对称轴为图中y轴,因此可知抛物线上一些特殊点坐标,用待定系数法可求解析式。(2)当水位上升
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 复习 二次 函数 专题
限制150内