《初高中函数知识点总结大全(共23页).doc》由会员分享,可在线阅读,更多相关《初高中函数知识点总结大全(共23页).doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上初高中函数知识点总结大全正比例函数形如y=kx (k为常数,k0)形式,y是x的正比例函数。1.:R() 2.:R(实数集) 3.奇偶性: 4.:当k>0时,图像位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图像位于第二、,y随x的增大而减小(单调递减)。一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k0)一次函数与正比例函数的识别方法:若y=kx+b(k,b是常数,k0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就
2、成为y=kx(k是常数,k0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。A与B成正比例óA=kB(k0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k,即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。三、一次函数的图像及性质: 1作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以做出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)2性质:(1)在一次函数上的任意一点P(x,y),都满足等式
3、:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。3k,b与函数图像所在象限:当k0时,直线必通过一、三象限,y随x的增大而增大;当k0时,直线必通过二、四象限,y随x的增大而减小。当b0时,直线必通过一、二象限;当b=0时,直线通过原点当b0时,直线必通过三、四象限。特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。(1)设一次函数
4、的表达式(也叫解析式)为y=kx+b。(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b 和 y2=kx2+b (3)解这个二元一次方程,得到k,b的值。(4)最后得到一次函数的表达式。五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。s=vt。2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。六、常用公式:1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.关于点的距离的问
5、题方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示; 任意两点的距离为; 若ABx轴,则的距离为; 若ABy轴,则的距离为; 点到原点之间的距离为点的坐标方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;一次函数y=kx+b(k0)中k、b的意义: k(称为斜率)表示直线y=kx+b(k0) 的倾斜程度;b(称为截距)表示直线y=kx+b(k0)与y轴交点的 ,也表示直线在y轴上
6、的 。 同一平面内,不重合的两直线 y=k1x+b1(k10)与 y=k2x+b2(k20)的位置关系:当 时,两直线平行。当 时,两直线垂直。 当 时,两直线相交。当 时,两直线交于y轴上同一点。 特殊直线方程: X轴 : 直线 Y轴 : 直线 与X轴平行的直线 与Y轴平行的直线 一、 三象限角平分线 二、四象限角平分线 待定系数法求解析式方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k0)的解析式。 已知是直线或一次函数可以设y=kx+b(k0); 若点在直线上,则可以将点的坐标代入解析式构建方程。平移方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上
7、的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b即可。直线y=kx+b向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。交点问题及直线围成的面积问题方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c(a,b,c为常数,a0,且a决定函数的开口方向,a>0时,开口方向向上
8、,a<0时,开口方向向下, |a|还可以决定开口大小, |a|越大,则抛物线的开口越小。)则称y为x的二次函数。二次函数表达式的右边通常为二次三项式。II.二次函数的三种表达式一般式:y=ax2+bx+c(a,b,c为常数,a0)顶点式:y=a(x-h) 2+k 抛物线的顶点P(h,k)交点式:y=a(x-x)(x-x ) 仅限于与x轴有交点A(x ,0)和B(x,0)的抛物线注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b2)/4a x,x=(-b±b2-4ac)/2aIII.二次函数的图像在平面直角坐标系中做出二次函数y=x2的图像,可以看出,二次函
9、数的图像是一条抛物线。IV.抛物线的性质1.抛物线是轴对称图形。对称轴为直线x = -b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b2)/4a )当-b/2a=0时,P在y轴上;当= b2-4ac=0时,P在x轴上。3.二次项系数a决定抛物线的开口方向和大小。当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即a b0),对称轴在y轴左;当a与b异号时(即a b0),对
10、称轴在y轴右。5.常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数= b2-4ac0时,抛物线与x轴有2个交点。= b2-4ac=0时,抛物线与x轴有1个交点。= b2-4ac0时,抛物线与x轴没有交点。V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。 1二次函数y=ax2,y=a(x-h)2,y=a(x-h)2 +k,y=ax2+bx+c(各式中,a0)的图像形状相同,只
11、是位置不同,它们的顶点坐标及对称轴如下表: 解析式顶点坐标对 称 轴y=ax2(0,0)x=0y=a(x-h)2(h,0)x=hy=a(x-h) 2+k(h,k)x=hy=ax2+bx+c(-b/2a,4ac-b2/4a)x=-b/2a当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2 +k的图象;当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位
12、可得到y=a(x-h)2+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;因此,研究抛物线 y=ax2+bx+c(a0)的图像,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了这给画图像提供了方便 2抛物线y=ax2+bx+c(a0)的图像:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-
13、b/2a,4ac-b2/4a) 3抛物线y=ax2+bx+c(a0),若a>0,当x -b/2a时,y随x的增大而减小;当x -b/2a时,y随x的增大而增大若a<0,当x -b/2a时,y随x的增大而增大;当x -b/2a时,y随x的增大而减小 4抛物线y=ax2+bx+c的图像与坐标轴的交点: (1)图像与y轴一定相交,交点坐标为(0,c); (2)当=b2-4ac>0,图像与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax2+bx+c=0(a0)的两根这两点间的距离AB=|x-x| 当=0图像与x轴只有一个交点; 当<0图像与x轴没有交点
14、当a>0时,图像落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图像落在x轴的下方,x为任何实数时,都有y<0 5抛物线y=ax2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b2)/4a 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值 6用待定系数法求二次函数的解析式 (1)当题给条件为已知图像经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax2+bx+c(a0) (2)当题给条件为已知图像的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h) 2+k(a0)
15、(3)当题给条件为已知图像与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x)(x-x)(a0) 7二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现重要知识:(a,b,c为常数,a0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)二次函数表达式的右边通常为二次。x是,y是x的二次函数。求根公式当b2-4ac>0 时当b2-4ac=0时x1=x2=-b/2a一般式y=ax2+bx+c(a
16、,b,c为常数,a0)顶点式抛物线的顶点 P(h,k) :y=a(x-h)2+k(a,h,k为常数,a0)交点式仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线:y=a(x-x1)(x-x2)(a,x1,x2为常数,a0)3种形式的转化一般式和顶点式对于二次函数y=ax2+bx+c,其顶点坐标为(-b/2a,(4ac-b2)/4a),即h=-b/2a=(x1+x2)/2k=(4ac-b2)/4a一般式和交点式x1,x2=-b±(b2-4ac)/2a(即一元二次方程求根公式)抛物线的性质1.抛物线是轴对称图形。为直线x = -b/2a。与抛物线唯一的交点为抛物线的顶点P
17、。特别地,当b=0时,抛物线的是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b2)/4a )当-b/2a=0,即b=0时,P在y轴上;当= b2-4ac=0时,P在x轴上。3.a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小。4.b和a共同决定的位置。当a与b同号时(即a b>0),对称轴在y轴左;当a与b异号时(即a b<0),对称轴在y轴右。5.c决定抛物线与y轴交点。抛物线与y轴交于(0,c)6.抛物线与x轴交点个数= b2-4ac>0时,抛物线与x轴有
18、2个交点。= b2-4ac=0时,抛物线与x轴有1个交点。= b2-4ac<0时,抛物线与x轴没有交点。X的取值是(x= -b±b2-4ac /2a乘上虚数i,整个式子除以2a)当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a;在x|x<-b/2a上是,在x|x>-b/2a上是增函数;抛物线的开口向上;函数的是y|y4ac-b2/4a相反不变当b=0时,抛物线的是y轴,这时,函数是,解析式变形为y=ax2+c(a0)7.:R:(对应,且只讨论a大于0的情况,a小于0的情况请读者自行推断)(4ac-b2)/4a,);k
19、,正无穷)8.:非奇非偶 (当且仅当b=0时,为f(x)=ax2+c, 此时为):无:y=ax2+bx+ca0,a、b、c为。a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;:(-b/2a,(4ac-b2)/4a);=b-4ac,>0,图象与x轴交于两点:(-b+/2a,0)和(-b-/2a,0);=0,图象与x轴交于一点:(-b/2a,0);<0,图象与x轴无交点;y=a(x-h)2+k配方式此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b2)/4a;二次函数的性质特别地,二次函数(以下称函数)y=ax2+bx+c(a0),当y=0时,二次函数为
20、关于x的一元二次方程(以下称方程),即ax2+bx+c=0(a0)此时,与x轴有无交点即有无。函数与x轴交点的横坐标即为方程的根。反比例函数1. 定义:一般地,形如(为常数,)的函数称为反比例函数。还可以写成2. 反比例函数解析式的特征:等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1.比例系数自变量的取值为一切非零实数。函数的取值是一切非零实数。3. 反比例函数的图像图像的画法:描点法 列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数) 描点(有小到大的顺序) 连线(从左到右光滑的曲线)反比例函数的图像是双曲线,(为常数,)中自
21、变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。反比例函数的图像是是轴对称图形(对称轴是或)。反比例函数()中比例系数的几何意义是:过双曲线 ()上任意引轴轴的垂线,所得矩形面积为。4反比例函数性质如下表:的取值图像所在象限函数的增减性一、三象限在每个象限内,值随的增大而减小二、四象限在每个象限内,值随的增大而增大5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)6“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。7.在反比例函数中, 当K0
22、时,反比例函数图像经过一,三象限,是减函数当K0时,反比例函数图像经过二,四象限,是增函数8.反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。 9.对于双曲线ykx ,若在分母上加减任意一个实数 (即 yk(x±m)m为常数),就相当于将双曲线图像向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)10. 反比例函数的应用对数函数(一)对数1对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(底数, 真数, 对数式)说明: 注意底数的限制,且; ; 注意对数的书写格式两个重要对数: 常用对数:以10为底的对数; 自然对数:以无理数为底的对数的对数指数式与对数式
23、的互化幂值 真数 N b 底数 指数 对数(二)对数的运算性质如果,且,那么: ·; ; 注意:换底公式(,且;,且;)利用换底公式推导下面的结论(1);(2)(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+)注意: 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:, 都不是对数函数,而只能称其为对数型函数 对数函数对底数的限制:,且2、对数函数的性质:a>10<a<1定义域x0定义域x0值域为R值域为R在R上递增在R上递减函数图像都过定点(1,0)函数图像都过定点(1,0)对数函数的一般形式为 ,它实际上就是指
24、数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。(1)对数函数的定义域为大于0的实数集合。(2)对数函数的值域为全部实数集合。(3)函数总是通过(1,0)这点。(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。(5)显然对数函数无界。指数函数(一)指数与指数幂的运算1根式的概念:一般地,如果,那么叫做的次方根,其中>1,且*负数没有偶次方根;0的任何次方根都是0,记作。当是奇数时,当是偶数时,2分数指
25、数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义3实数指数幂的运算性质(1)· ;(2) ;(3)(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和12、指数函数的图像和性质a>10<a<1定义域 R定义域 R值域y0值域y0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图像都过定点(0,1)函数图像都过定点(0,1)注意:利用函数的单调性,结合图像还可以看出:(1)在a,b上,值域是或;(2)若,则;取遍所有正数当且仅当
26、;(3)对于指数函数,总有;指数函数的一般形式为 ,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得不同大小影响函数图形的情况。可以看到:(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。(2) 指数函数的值域为大于0的实数集合。(3) 函数图形都是下凹的。(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的
27、位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。(7) 函数总是通过(0,1)这点。(8) 显然指数函数无界。 函数奇偶性注图:(1)为奇函数(2)为偶函数1定义一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做奇函数。(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,
28、那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。说明:奇、偶性是函数的整体性质,对整个定义域而言奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)判断或证明函数是否具有奇偶性的根据是定义2奇偶函数图像的特征:定理 奇函数的图像关于原点成中心对称图表
29、,偶函数的图像关于y轴或轴对称图形。f(x)为奇函数的图像关于原点对称点(x, y)(-x,-y)奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。偶函数 在某一区间上单调递增,则在它的对称区间上单调递减。 3. 奇偶函数运算(1) 两个偶函数相加所得的和为偶函数.(2) 两个奇函数相加所得的和为奇函数.(3) 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.(4) 两个偶函数相乘所得的积为偶函数.(5) 两个奇函数相乘所得的积为偶函数.(6) 一个偶函数与一个奇函数相乘所得的积为奇函数.函数定义域(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集
30、合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 函数值域名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合 常用的求值域的方法(1)化归法;(2)图像法(数形结合), (3)函数单调性法, (4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等 关于函数值域误区定义域、对应法则、值域是函数构造的三个基本“元件”。平时数学
31、中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。“范围”与“值域”相同吗?“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不一定是“值域”。专心-专注-专业
限制150内