勾股定理在中考中的几种新题型(共8页).doc
《勾股定理在中考中的几种新题型(共8页).doc》由会员分享,可在线阅读,更多相关《勾股定理在中考中的几种新题型(共8页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 勾股定理在中考中的几种新题型一、逆向思考型例1如图1,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( )(A)CD、EF、GH(B)AB、EF、GH(C)AB、CD、GH(D)AB、CD、EF图1解:在RtEAF中,AF=1,AE=2,根据勾股定理,得同理计算发现,即,根据勾股定理的逆定理得到AB、EF、GH为边的三角形是直角三角形。故选(B)。二、探索规律型例2如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH
2、,如此下去。(1)记正方形ABCD的边长,依上述方法所作的正方形的边长依次为,的值。(2)根据以上规律写出第n个正方形的边长的表达式。图2解:(1)因为四边形ABCD为正方形,图形中有多个等腰直角三角形所以根据勾股定理同理AE=2,因为(2)根据以上规律,第n个正方形的边长(n是自然数)三、展面助解型例3如图所示1为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示。已知展开图中每个正方形的边长为1。(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?(2)试比较立体图中BAC与平面展开图中的大小关系?1解:(1)在平面展开图中可画出最长的线为。如图32中的,在Rt中因为由勾股
3、定理得:答:这样的线段可画4条(另三条用虚线标出)2(2)因为立体图中BAC为平面等腰直角三角形的一锐角,所以BAC=45°。在平面展开图33中,连接线段(如图34),由勾股定理可得:由勾股定理的逆定理可得为直角三角形又因为所以为等腰直角三角形所以所以BAC与相等四、观图解答型在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是、=_。图4解:代表面积为的正方形的边长的平方,代表面积为的正方形的边长的平方,又代表斜放置的正方形1的边长的平方和,故=斜放置的正方形1的面积;同理=斜放置的正方形3的面积;所以。五、折叠构
4、造型例5(2004年江苏省无锡市)如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。如果M为CD边的中点,求证:DE:DM:EM=3:4:5。图5解:由折叠知,EM=EA,设CD=2a所以在RtEDM中,所以解得所以所以。六、剪拼操作型例6(1)四年一度的国际数学家大会于2002年8月20日在北京召开。大会会标如图6甲。它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形。若大正方形的面积为13,每个直角三角形两条直角边的和是5,求中间小正方形的面积。(2)现有一张长为6.5cm、宽为2cm的纸片,如图6乙,请你将它分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 中考 中的 几种新 题型
限制150内