对勾函数讲解与例题解析(共4页).doc
《对勾函数讲解与例题解析(共4页).doc》由会员分享,可在线阅读,更多相关《对勾函数讲解与例题解析(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上对勾函数对勾函数:数学中一种常见而又特殊的函数。如图一、对勾函数f(x)=ax+ 的图象与性质对勾函数是数学中一种常见而又特殊的函数。它在高中教材上不出现,但考试总喜欢考的函数,所以也要注意它和了解它。(一) 对勾函数的图像对勾函数是一种类似于反比例函数的一般函数,形如f(x)=ax+(接下来写作f(x)=ax+b/x)。当a0,b0时,f(x)=ax+b/x是正比例函数f(x)=ax与反比例函数f(x)= b/x “叠加”而成的函数。这个观点,对于理解它的性质,绘制它的图象,非常重要。当a,b同号时,f(x)=ax+b/x的图象是由直线yax与双曲线y= b/x构成
2、,形状酷似双勾。故称“对勾函数”,也称“勾勾函数”、“海鸥函数”。如下图所示:a>0 b>0 a<0 b<0对勾函数的图像(ab同号)当a,b异号时,f(x)=ax+b/x的图象发生了质的变化。但是,我们依然可以看作是两个函数“叠加”而成。(请自己在图上完成:他是如何叠加而成的。)对勾函数的图像(ab异号)一般地,我们认为对勾函数是反比例函数的一个延伸,即对勾函数也是双曲线的一种,只不过它的焦点和渐进线的位置有所改变罢了。接下来,为了研究方便,我们规定a>0,b>0。之后当a<0,b<0时,根据对称就很容易得出结论了。(二) 对勾函数的顶点对勾函
3、数性质的研究离不开均值不等式。利用均值不等式可以得到:当x>0时,。当x<0时,。即对勾函数的定点坐标:(三) 对勾函数的定义域、值域由(二)得到了对勾函数的顶点坐标,从而我们也就确定了对勾函数的定义域、值域等性质。yXOy=ax(四) 对勾函数的单调性(五) 对勾函数的渐进线由图像我们不难得到:(六) 对勾函数的奇偶性 :对勾函数在定义域内是奇函数,二、均值不等式(基本不等式)对勾的研究离不开。说到均值不等式,其实也是根据得来的。我们都知道,(a-b)20,展开就是a2-2ab+b20,有a2+b22ab,两边同时加上2ab,整理得到(a+b)24ab,同时开,就得到了的公式:a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 讲解 例题 解析
限制150内