《中考专题二次函数练习题.doc》由会员分享,可在线阅读,更多相关《中考专题二次函数练习题.doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2009年中考试题 二次函数专题1. (2009台州)已知二次函数的与的部分对应值如下表:013131则下列判断中正确的是()A抛物线开口向上 B抛物线与轴交于负半轴C当4时,0 D方程的正根在3与4之间2. (2009南州)抛物线的图象如图1所示,根据图象可知,抛物线的解析式可能是( )学科网图1A、y=x2-x-2 B、y= 学C、y= D、y=学 (2009南充)抛物线的对称轴是直线( )ABCD3. (2009莆田)二次函数的图象如何平移就褥到的图像( ) A向左平移1个单位,再向上平移3个单位 B向右平移1个单位,再向上平移3个单位 C向左平移1个单位,再向下平移3个单位 D向右平移
2、1个单位,再向下平移3个单位。(第7题)4. (2009丽水)已知二次函数yax2bxc(a0)的图象如图所示,给出以下结论:a0. 该函数的图象关于直线对称.当时,函数y的值都等于0.其中正确结论的个数是 A3 B2 C1 D05. (2009嘉兴)已知,在同一直角坐标系中,函数与的图象有可能是()ABCD(第12题)6. (2009湖州)已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?( )A6B7C8D97. (2009烟台)二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象
3、大致为( )1Oxy(第11题图)yxOyxOBCyxOAyxOD8. (2009黄石)已知二次函数y=ax2+bx+c(a0)的图象如图3所示,下列结论:abc0 2a+b0 4a2b+c0 a+c0,图4其中正确结论的个数为( )A、4个 B、3个 C、2个 D、1个9. (2009南州)二次函数的图象关于原点O(0, 0)对称的图象的解析式是_。学科10. (2009湖州)已知抛物线(0)的对称轴为直线,且经过点,试比较和的大小: _(填“”,“”或“=”)11. (2009义乌)如图,抛物线与轴的一个交点A在点(-2,0)和(-1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边
4、界和内部)的一个动点,则(填“”或“”); 的取值范围是12. (2009重庆)某电视机生产厂家去年销往农村的某品牌电视机每台的售价(元)与月份之间满足函数关系,去年的月销售量(万台)与月份之间成一次函数关系,其中两个月的销售情况如下表:月份1月5月销售量3.9万台4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了,且每月的销售量都比去年12月份下降了。国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴。受此政策的影响,今年3月份至
5、5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台。若今年3至5月份国家对这种电视机的销售共给予财政补贴936万元,求的值(保留一位小数)(参考数据:,)13. (2009宁波)如图抛物线与轴相交于点、,且过点(,)(1)求a的值和该抛物线顶点P的坐标(2)请你设计一种平移的方法,使平移后抛物线的顶点落要第二象限,并写出平移后抛物线的解析式EABGNDMC(第22题图)14. (2009德州)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边
6、三角形,固定点E为AB的中点EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆 (1)当MN和AB之间的距离为0.5米时,求此时EMN的面积; (2)设MN与AB之间的距离为米,试将EMN的面积S(平方米)表示成关于x的函数; (3)请你探究EMN的面积S(平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由 15. (2009宜宾)如图,在平面直角坐标系xoy中,等腰梯形OABC的下底边OA在x轴的正半轴上,BCOA,OC=ABtanBA0=,点B的坐标为(7,4)(1)求点A、C的坐标;(2)求经过点0、B、C
7、的抛物线的解析式;(3)在第一象限内(2)中的抛物线上是否存在一点P,使得经过点P且与等腰梯形一腰平行的直线将该梯形分成面积相等的两部分?若存在,请求出点P的横坐标;若不存在,请说明理由16. (2009泸州) 如图1 2,已知二次函数 的图象与x轴的正半轴相交于点A、B,与y轴相交于点C,且 (1)求c的值; (2)若ABC的面积为3,求该二次函数的解析式; (3)设D是(2)中所确定的二次函数图象的顶点,试问在直线AC上是否存在一点P使PBD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由17. (2009成都)在平面直角坐标系xOy中,已知抛物线与x轴交于A、B两点(点A在点B的
8、左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为,与x轴的交点为N,且COSBCO。 (2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由; (3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?18. (2009莆田)已知,如图抛物线与y轴交于C点,与x轴交于A、B两点,A点在B点左侧。点B的坐标为(1,0),OC=30B (1)求抛物线的解析式; (2)若点D是线段A
9、C下方抛物线上的动点,求四边形ABCD面积的最大值: (3)若点E在x轴上,点P在抛物线上。是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由xyO12321A19. (2009江苏)如图,已知二次函数的图象的顶点为二次函数的图象与轴交于原点及另一点,它的顶点在函数的图象的对称轴上(1)求点与点的坐标;(2)当四边形为菱形时,求函数的关系式20. (2009泰安)如图,OAB是边长为2的等边三角形,过点A的直线(1) 求点E的坐标;(2) 求过 A、O、E三点的抛物线解析式;21. (2009广州)如图13,二次函数的图象与x轴交于A、B两点,
10、与y轴交于点C(0,-1),ABC的面积为。(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴垂线,若该垂线与ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。xyDCAOB(第24题)22. (2009江西)如图,抛物线与轴相交于、两点(点在点的左侧),与轴相交于点,顶点为.(1)直接写出、三点的坐标和抛物线的对称轴; (2)连接,与抛物线的对称轴交于点,点为线段上的一个动点,过点作交抛物线于点,设点的横坐标为;用含的代数式表示线段的长,并求出当为何值时,四边形为平行四边形
11、?设的面积为,求与的函数关系式.23.24.25. (2009安顺)如图,已知抛物线与交于A(1,0)、E(3,0)两点,与轴交于点B(0,3)。(1) 求抛物线的解析式;(2) 设抛物线顶点为D,求四边形AEDB的面积;(3) AOB与DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。26. (2009烟台) 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台 (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的
12、函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?27. (2009中山)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.DBAMCN(1)证明:RtABMRtMCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;(3)当M点运动到什么位置时RtABMRtAMN,求此时x的值.第25题图28.
13、 (2009荆门)一开口向上的抛物线与x轴交于A(m2,0),B(m2,0)两点,记抛物线顶点为C,且ACBC(1)若m为常数,求抛物线的解析式;(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得BCD为等腰三角形?若存在,求出m的值;若不存在,请说明理由EABGNDMC(第23题图)27.(2009日照)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点EMN是由电脑控制其形状变化的三角
14、通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆 (1)当MN和AB之间的距离为0.5米时,求此时EMN的面积; (2)设MN与AB之间的距离为米,试将EMN的面积S(平方米)表示成关于x的函数; (3)请你探究EMN的面积S(平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由 28.(09杭州)已知平行于x轴的直线与函数和的图象分别交于点A和点B,又有定点P(2,0)。(1)若,且tanPOB=,求线段AB的长;(2)在过A,B两点且顶点在直线上的抛物线中,已知线段AB=,且在它的对称轴左边时,y随着x的增大而增大,试求出满足条件的抛物线的解
15、析式;(3)已知经过A,B,P三点的抛物线,平移后能得到的图象,求点P到直线AB的距离。29.(2009义乌)如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原。 (1)当时,折痕EF的长为 ;当点E与点A重合时,折痕EF的长为 ;(2)请写出使四边形EPFD为菱形的的取值范围,并求出当时菱形的边长;(3)令,当点E在AD、点F在BC上时,写出与的函数关系式。当取最大值时,判断与是否相似?若相似,求出的值;若不相似,请说明理由。30.(2009义乌)已知点A、B分别是轴、轴上的动点
16、,点C、D是某个函数图像上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图像的伴侣正方形。例如:如图,正方形ABCD是一次函数图像的其中一个伴侣正方形。(1)若某函数是一次函数,求它的图像的所有伴侣正方形的边长;(2)若某函数是反比例函数,他的图像的伴侣正方形为ABCD,点D(2,m)(m 2)在反比例函数图像上,求m的值及反比例函数解析式;(3)若某函数是二次函数,它的图像的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标,写出符合题意的其中一条抛物线解析式,并判断你写出的抛物线的伴侣正方形的个数是奇数还是
17、偶数?。(本小题只需直接写出答案)31.(2009重庆) (2009重庆已知:如图,在平面直角坐标系中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA=2,OC=3。过原点O作AOC的平分线交AB于点D,连接DC,过点D作DEDC,交OA于点E。(1)求过点E、D、C的抛物线的解析式;(2)将EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G。如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ
18、与AB的交点P与点C、G构成的PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由。32.(2009台州)如图,已知直线交坐标轴于两点,以线段为边向上作正方形,过点的抛物线与直线另一个交点为(1)请直接写出点的坐标; (2)求抛物线的解析式;(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;(第24题)(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上两点间的抛物线弧所扫过的面积备用图33.(2009娄底)如图11,在ABC中,C=90,BC=8,AC=6
19、,另有一直角梯形DEFH(HFDE,HDE=90)的底边DE落在CB上,腰DH落在CA上,且DE=4,DEF=CBA,AHAC=23(1)延长HF交AB于G,求AHG的面积.(2)操作:固定ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH(如图12).探究1:在运动中,四边形CDHH能否为正方形?若能, 请求出此时t的值;若不能,请说明理由.探究2:在运动过程中,ABC与直角梯形DEFH重叠部分的面积为y,求y与t的函数关系.34.(2009南充)如图9,已知正比例函数和反比例函数的图象都经过点(1)求正
20、比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;yxOCDBA336(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由35.(2009深圳)如图,在直角坐标系中,点A的坐标为(2,0),连结OA,将线段OA绕原点O顺时针旋转120,得到线段OB.BAOyx(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中
21、抛物线的对称轴上是否存在点C,使BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么PAB是否有最大面积?若有,求出此时P点的坐标及PAB的最大面积;若没有,请说明理由.36.(2009丽水)已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为t秒.(第24题)(1)填空:菱形ABCD的边长是 、面积是 、 高BE的长是 ;(2)探究下列问题:若点P的速度为每秒1个单位,点Q的速度
22、为每秒2个单位.当点Q在线段BA上时,求APQ的面积S关于t的函数关系式,以及S的最大值; 若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值.37. 2009宁德)已知抛物线C1:的顶点为P,与x轴交于A、B两点(点A在点B的左边),点B的横坐标是1(1)求P点坐标及a的值;(4分)(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;(4
23、分)yxAOBPN图2C1C4QEF图(2)(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180后得到抛物线C4抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标yxAOBPM图1C1C2C3图(1)yxAOBPM图(1)C1C2C3HG26(本题满分13分)解:(1)由抛物线C1:得顶点P的为(-2,-5) 2分点B(1,0)在抛物线C1上 解得,a 4分(2)连接PM,作PHx轴于H,作MGx轴于G点P、M关于点B成中心对称PM过点B,且PBMBPBHMBGMGPH5,BGBH3顶点M的坐标为(4,
24、5) 6分 抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到抛物线C3的表达式为 8分(3)抛物线C4由C1绕点x轴上的点Q旋转180得到顶点N、P关于点Q成中心对称 由(2)得点N的纵坐标为5yxAOBPN图(2)C1C4QEFHGK设点N坐标为(m,5) 9分 作PHx轴于H,作NGx轴于G 作PKNG于K 旋转中心Q在x轴上EFAB2BH6 FG3,点F坐标为(m+3,0) H坐标为(2,0),K坐标为(m,-5),根据勾股定理得 PN2NK2+PK2m2+4m+104 PF2PH2+HF2m2+10m+50 NF252+3234 10分 当PNF90时,PN2+ NF2PF2
25、,解得m,Q点坐标为(,0) 当PFN90时,PF2+ NF2PN2,解得m,Q点坐标为(,0)PNNK10NF,NPF90综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点的三角形是直角三角形 13分)642246yxO38.(2009嘉兴)如图,曲线C是函数在第一象限内的图象,抛物线是函数的图象点()在曲线C上,且都是整数(1)求出所有的点;(2)在中任取两点作直线,求所有不同直线的条数;(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率39.(2009益阳)阅读材料: 如图12-1,过ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距
26、离叫ABC的“水平宽”(a),中间的这条直线在ABC内部线段的长度叫ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:图12-2xCOyABD11 如图12-2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,当P点运动到顶点C时,求CAB的铅垂高CD及;(3)是否存在一点P,使SPAB=SCAB,若存在,求出P点的坐标;若不存在,请说明理由.20解:(1)设抛物线的解析式为:1分 把A(3,0)代入解
27、析式求得所以3分设直线AB的解析式为:由求得B点的坐标为 4分把,代入中解得:所以6分(2)因为C点坐标为(,4)所以当x时,y14,y22所以CD4-228分(平方单位)10分(3)假设存在符合条件的点P,设P点的横坐标为x,PAB的铅垂高为h,则12分由SPAB=SCAB得:化简得:解得,将代入中,解得P点坐标为14分40.(2009衡阳)如图12,直线与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MCOA于点C,MDOB于D(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为,正方形OCMD与AOB重叠部分的面积为S试求S与的函数关系式并画出该函数的图象BxyMCDOA图12(1)BxyOA图12(2)BxyOA图12(3)yxOABPCD第18题图18如图,已知点A、B在双曲线(x0)上,ACx轴于点C,BDy轴于点D,AC与BD交于点P,P是AC的中点,若ABP的面积为3,则k
限制150内